OFFSET
0,2
COMMENTS
Generating function G(x) is D-finite with a singular point at x = 1/64 (cf. Graph Link). After summing 300000 terms, G(1/64) = 1.239466... and 1 - 1/G(1/64) = 0.193201... Convergence to A086232 is very slow. - Bradley Klee, Aug 20 2018
a(n) is also the constant term in the expansion of (w + 1/w + x + 1/x + y + 1/y + z + 1/z)^(2n). This follows directly from the sequence name, each variable corresponding to a single step in one of the four axis directions. - Christopher J. Smyth, Sep 28 2018
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..557
S. R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice. [broken link]
Steven R. Finch, Symmetric Random Walk on n-Dimensional Integer Lattice. [Cached copy, with permission of the author]
Bradley Klee, Graph of g.f.
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610.
Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
J. Novak, Pólya's random walk theorem, arXiv:1301.3916 [math.PR], 2013.
FORMULA
E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^4. (I = Modified Bessel function of the first kind).
a(n) = binomial(2*n,n)*A002895(n). - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)^2*hypergeom([1/2,-n,-n,-n],[1,1,1/2-n],1). - Peter Luschny, May 23 2017
a(n) ~ 2^(6*n+1) / (Pi*n)^2. - Vaclav Kotesovec, Nov 13 2017
From Bradley Klee, Aug 20 2018: (Start)
G.f.: Define G(x) = Sum_{n>=0} a(n)*x^n and G^(j) = (d/dx)^j G(x), then Sum_{j=0..4,k=0..5} M_{j,k}*G^(j)*x^k = 0, with
M={{-8, 768, 0, 0, 0, 0}, {1, -424, 14592, 0, 0, 0}, {0, 7, -1172, 25344, 0, 0}, {0, 0, 6, -640, 10240, 0}, {0, 0, 0, 1, -80, 1024}}.
Sum_{j=0..2,k=0..4} M_{j,k}*a(n-j)*n^k = 0, with
M={{0, 0, 0, 0, 1}, {-8, 52, -132, 160, -80}, {768, -3584, 5888, -4096, 1024}}.
(End)
a(n) = Sum_{i+j+k+l=n, 0<=i,j,k,l<=n} multinomial(2n [i,i,j,j,k,k,l,l]). - Shel Kaphan, Jan 16 2023
EXAMPLE
a(5)=7939008, i.e., there are 7939008 different walks that start and end at origin of a 4-dimensional integer lattice after 2*5=10 steps, free to pass through origin at intermediate steps.
MAPLE
A039699 := n -> binomial(2*n, n)^2*hypergeom([1/2, -n, -n, -n], [1, 1, 1/2 - n], 1):
seq(simplify(A039699(n)), n=0..14); # Peter Luschny, May 23 2017
MATHEMATICA
max = 30 (* must be even *); Partition[ CoefficientList[ Series[ BesselI[0, 2 x]^4, {x, 0, max}], x]*Range[0, max]!, 2][[All, 1]] (* Jean-François Alcover, Oct 05 2011 *)
With[{nn=30}, Take[CoefficientList[Series[BesselI[0, 2x]^4, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 09 2013 *)
RecurrenceTable[{256*(n-1)^2*(2*n-3)*(2*n-1)*a[n-2] - 4*(2*n-1)^2*(5*n^2-5*n+2)*a[n-1] + n^4*a[n]==0, a[0]==1, a[1]==8}, a, {n, 0, 100}] (* Bradley Klee, Aug 20 2018 *)
PROG
(PARI)
C=binomial;
A002895(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) );
a(n)= C(2*n, n) * A002895(n);
/* Joerg Arndt, Apr 19 2013 */
CROSSREFS
KEYWORD
nonn,nice,easy,walk
AUTHOR
Alessandro Zinani (alzinani(AT)tin.it)
STATUS
approved