login
A038728
Configurations of linear chains in a 5-dimensional hypercubic lattice.
1
0, 0, 0, 0, 2240, 35840, 433040, 4862560, 51759280, 527313040, 5218528800, 50434399280, 478624474160, 4473452644480
OFFSET
1,5
COMMENTS
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=2 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,m=2) = A033323(n); for d=3, we have C(n,m=2) = A049230(n); and for d=4, we have C(n,m=2) = A046788(n).) - Petros Hadjicostas, Jan 05 2019
LINKS
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Table 1 on p. 1090.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, May 02 2000
EXTENSIONS
Terms a(10) and a(11) were copied from Table 1 (p. 1090) of Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 05 2019
Name edited by Petros Hadjicostas, Jan 05 2019
a(12)-a(14) from Sean A. Irvine, Feb 01 2021
STATUS
approved