login
A049230
Configurations of linear chains in a cubic lattice.
2
0, 0, 0, 0, 288, 2112, 11928, 66192, 353544, 1817208, 9092592, 44547912, 214532136, 1019264736, 4783813296, 22238211480, 102424615968, 468396156360
OFFSET
1,5
COMMENTS
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of this sequence is C_{n,m} for m=2 (and d=3). Here, C_{n,m} is the total number of configurations "for chains of n links with m nearest-neighbor contacts" in a d-dimensional lattice (with d=3). These numbers appear in Table I (p. 1088). - Petros Hadjicostas, Jan 03 2019
LINKS
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Name edited by Petros Hadjicostas, Jan 03 2019
a(12)-a(18) from Sean A. Irvine, Jul 23 2021
STATUS
approved