Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 03 2021 15:43:04
%S 1,1,0,0,1,-1,0,6,-19,29,48,-524,2057,-3901,-9632,129034,-664363,
%T 1837905,2388688,-67004696,478198545,-1994889945,1669470784,
%U 56929813934,-615188040195,3794477505573,-12028579019536,-50780206473220
%N a(n) = Sum_{k=0..n} (k-n)^k.
%H Seiichi Manyama, <a href="/A038125/b038125.txt">Table of n, a(n) for n = 0..500</a>
%F G.f.: 1+ sum(k>=0, x^(k+1)/(1+x^(k+1)) ) = 1/Q(0), where Q(k) = 1 - x + x^2*(k+1)/(1 + (k+1)*x/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Jan 10 2014
%e 0^0 = 1,
%e 1^0 - 0^1 = 1,
%e 2^0 - 1^1 + 0^2 = 0,
%e 3^0 - 2^1 + 1^2 - 0^3 = 0,
%e ...
%t Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
%o (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ _Seiichi Manyama_, Dec 02 2021
%o (PARI) a(n) = sum(k=0, n, (k-n)^k); \\ _Michel Marcus_, Dec 03 2021
%Y Cf. A003101, A026898, A120485.
%K sign,easy
%O 0,8
%A Jim Ferry (jferry(AT)alum.mit.edu)