login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038125
a(n) = Sum_{k=0..n} (k-n)^k.
8
1, 1, 0, 0, 1, -1, 0, 6, -19, 29, 48, -524, 2057, -3901, -9632, 129034, -664363, 1837905, 2388688, -67004696, 478198545, -1994889945, 1669470784, 56929813934, -615188040195, 3794477505573, -12028579019536, -50780206473220
OFFSET
0,8
LINKS
FORMULA
G.f.: 1+ sum(k>=0, x^(k+1)/(1+x^(k+1)) ) = 1/Q(0), where Q(k) = 1 - x + x^2*(k+1)/(1 + (k+1)*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 10 2014
EXAMPLE
0^0 = 1,
1^0 - 0^1 = 1,
2^0 - 1^1 + 0^2 = 0,
3^0 - 2^1 + 1^2 - 0^3 = 0,
...
MATHEMATICA
Prepend[ Table[ Sum[ (k-n)^k, {k, 0, n} ], {n, 30} ], 1 ]
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1+k*x))) \\ Seiichi Manyama, Dec 02 2021
(PARI) a(n) = sum(k=0, n, (k-n)^k); \\ Michel Marcus, Dec 03 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Jim Ferry (jferry(AT)alum.mit.edu)
STATUS
approved