login
A037847
a(n)=Sum{d(i-1)-d(i): d(i)<d(i-1), i=0,1,...,m}, where Sum{d(i)*6^i: i=0,1,...,m} is the base 6 representation of n.
3
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 1, 1, 1, 2, 3, 4, 2, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 0, 0, 0, 1, 2, 3, 1
OFFSET
1,9
COMMENTS
This is the base-6 up-variation sequence; see A297330. - Clark Kimberling, Jan 18 2017
LINKS
MAPLE
A037847 := proc(n)
a := 0 ;
dgs := convert(n, base, 6);
for i from 2 to nops(dgs) do
if op(i, dgs)<op(i-1, dgs) then
a := a-op(i, dgs)+op(i-1, dgs) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Oct 19 2015
MATHEMATICA
g[n_, b_] := Differences[IntegerDigits[n, b]]; b = 6; z = 120;
Table[-Total[Select[g[n, b], # < 0 &]], {n, 1, z}]; (*A037856*)
Table[Total[Select[g[n, b], # > 0 &]], {n, 1, z}]; (*A037847*)
CROSSREFS
Cf. A297330.
Sequence in context: A088266 A116889 A347716 * A037883 A350775 A330267
KEYWORD
nonn,base
EXTENSIONS
Definition swapped with A037856. - R. J. Mathar, Oct 19 2015
Updated by Clark Kimberling, Jan 19 2018
STATUS
approved