login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036464
Number of ways to place two nonattacking queens on an n X n board.
19
0, 0, 8, 44, 140, 340, 700, 1288, 2184, 3480, 5280, 7700, 10868, 14924, 20020, 26320, 34000, 43248, 54264, 67260, 82460, 100100, 120428, 143704, 170200, 200200, 234000, 271908, 314244, 361340, 413540, 471200, 534688, 604384
OFFSET
1,3
LINKS
S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, January 26, 2013. - N. J. A. Sloane, Feb 16 2013
S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv:1609.00853 [math.CO], Sep 03 2016.
I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
FORMULA
a(n) = C(n, 3)*(3*n-1).
G.f.: 4*x^3*(2+x)/(1-x)^5. - Colin Barker, May 02 2012
a(n) = 2*sum_{i=1..n-2} i(i + 1)^2. - Wesley Ivan Hurt, Mar 18 2014
E.g.f.: (exp(x) * x^3 * (8 + 3*x))/6. - Vaclav Kotesovec, Feb 15 2015
For n>0, a(n) = A163102(n-1) - A006331(n-1). - Antal Pinter, Sep 20 2015
MAPLE
f:=n->n^4/2 - 5*n^3/3 + 3*n^2/2 - n/3; [seq(f(n), n=1..200)]; # N. J. A. Sloane, Feb 16 2013
MATHEMATICA
f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A036464 *)
Table[a[n]/4, {n, 2, 50}] (* A000914 *)
(* Clark Kimberling, Dec 31 2011 *)
CoefficientList[Series[4 x^2 (2 + x) / (1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 8, 44, 140}, 50] (* Harvey P. Dale, Mar 26 2015 *)
CROSSREFS
Column k=2 of A348129.
Sequence in context: A316466 A100583 A261996 * A000938 A252871 A307044
KEYWORD
nonn,easy,nice
AUTHOR
Robert G. Wilson v, Raymond Bush (c17h21no4(AT)hotmail.com), Kirk Conely, N. J. A. Sloane
STATUS
approved