login
A036290
a(n) = n*3^n.
19
0, 3, 18, 81, 324, 1215, 4374, 15309, 52488, 177147, 590490, 1948617, 6377292, 20726199, 66961566, 215233605, 688747536, 2195382771, 6973568802, 22082967873, 69735688020, 219667417263, 690383311398, 2165293113021, 6778308875544, 21182215236075, 66088511536554, 205891132094649
OFFSET
0,2
COMMENTS
If X_1,X_2,...,X_n is a partition of a 3n-set X into 3-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
LINKS
László Németh, The trinomial transform triangle, Journal of Integer Sequences, Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
FORMULA
From Paul Barry, Feb 06 2004: (Start)
A trinomial transform. Differentiate (1+x+x^2)^n and set x=1.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (2*n-2*i-j)*n!/(i!*j!*(n-i-j)!). (End)
From Paul Barry, Feb 15 2005: (Start)
a(n) = Sum_{k=0..2*n} T(n, k)*k, where T(n, k) is given by A027907.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*(j+k). (End)
From R. J. Mathar, Jun 19 2011: (Start)
G.f.: 3*x/(3*x-1)^2.
a(n) = 3*A027471(n+1). (End)
Sum_{n>=1} 1/a(n) = log(3/2) = 0.405465108... = A016578. - Franz Vrabec, Jan 07 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(4/3) = A083679. - Amiram Eldar, Jul 20 2020
a(n) = 6*a(n-1) - 9*a(n-2). - Wesley Ivan Hurt, Apr 26 2021
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 3*x*exp(3*x).
a(n) = n*A000244(n). (End)
MAPLE
A036290 := proc(n) n*3^n ; end proc: # R. J. Mathar, Jun 18 2011
MATHEMATICA
nn=20; a=1/(1-3x); CoefficientList[Series[x D[ a, x] , {x, 0, nn}], x] (* Geoffrey Critzer, Nov 18 2012 *)
Table[n 3^n, {n, 0, 30}] (* Vincenzo Librandi, Jul 06 2017 *)
PROG
(PARI) a(n)=3^n*n \\ Charles R Greathouse IV, Jun 18, 2011
(Magma) [n*3^n: n in [0..30]]; // Vincenzo Librandi, Jul 06 2017
CROSSREFS
Cf. A000244, A006234, A016578, A027471, A083679, A289399 (partial sums).
Sequence in context: A135371 A086346 A337193 * A078904 A099012 A122069
KEYWORD
nonn,easy
STATUS
approved