login
A036132
a(n) = 7^n mod 71.
2
1, 7, 49, 59, 58, 51, 2, 14, 27, 47, 45, 31, 4, 28, 54, 23, 19, 62, 8, 56, 37, 46, 38, 53, 16, 41, 3, 21, 5, 35, 32, 11, 6, 42, 10, 70, 64, 22, 12, 13, 20, 69, 57, 44, 24, 26, 40, 67, 43, 17, 48, 52, 9, 63, 15, 34, 25, 33
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
a(n) = a(n+70). - R. J. Mathar, Jun 04 2016
a(n) = a(n-1) - a(n-35) + a(n-36). - G. C. Greubel, Oct 17 2018
MAPLE
[ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[7, Range[0, 100], 71] (* G. C. Greubel, Oct 17 2018 *)
PROG
(PARI) a(n)=lift(Mod(7, 71)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(7, n, 71): n in [0..100]]; // G. C. Greubel, Oct 17 2018
(Python) for n in range(0, 100): print(int(pow(7, n, 71)), end=' ') # Stefano Spezia, Oct 17 2018
(GAP) List([0..60], n->PowerMod(7, n, 71)); # Muniru A Asiru, Oct 17 2018
CROSSREFS
Cf. A000420 (7^n).
Sequence in context: A043070 A083930 A178367 * A084968 A161145 A343737
KEYWORD
nonn,easy
STATUS
approved