login
A036130
a(n) = 2^n mod 61.
4
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 35, 9, 18, 36, 11, 22, 44, 27, 54, 47, 33, 5, 10, 20, 40, 19, 38, 15, 30, 60, 59, 57, 53, 45, 29, 58, 55, 49, 37, 13, 26, 52, 43, 25, 50, 39, 17, 34, 7, 14, 28, 56, 51, 41, 21, 42, 23, 46
OFFSET
0,2
REFERENCES
I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
a(n) = a(n+60). - R. J. Mathar, Jun 04 2016
a(n) = a(n-1) - a(n-30) + a(n-31). - G. C. Greubel, Oct 17 2018
MAPLE
[ seq(primroot(ithprime(i))^j mod ithprime(i), j=0..100) ];
MATHEMATICA
PowerMod[2, Range[0, 100], 61] (* G. C. Greubel, Oct 17 2018 *)
PROG
(PARI) a(n)=lift(Mod(2, 61)^n) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) [Modexp(2, n, 61): n in [0..100]]; // G. C. Greubel, Oct 17 2018
(GAP) a:=List([0..70], n->PowerMod(2, n, 61));; Print(a); # Muniru A Asiru, Jan 29 2019
CROSSREFS
Sequence in context: A239561 A010747 A318776 * A335836 A122169 A114183
KEYWORD
nonn,easy
STATUS
approved