OFFSET
2,5
LINKS
Alois P. Heinz, Rows n = 2..142, flattened
Marko Riedel, Counting the number of rooted trees of a certain height
Marko Riedel, Maple code for sequence (OGF)
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
Reference gives recurrence.
EXAMPLE
Triangle begins:
1;
1 1;
1 2 1;
1 4 3 1;
1 6 8 4 1;
1 10 18 13 5 1;
1 14 38 36 19 6 1;
thus there are 10 trees with 7 nodes and height 2.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
seq(seq(T(n, k), k=1..n-1), n=2..16); # Alois P. Heinz, Jul 31 2013
MATHEMATICA
Drop[Map[Select[#, # > 0 &] &,
Transpose[
Prepend[Table[
f[n_] :=
Nest[CoefficientList[
Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
PROG
(Python)
for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
# Peter Luschny, Aug 30 2024
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003
STATUS
approved