login
A034781
Triangle of number of rooted trees with n >= 2 nodes and height h >= 1.
49
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 18, 13, 5, 1, 1, 14, 38, 36, 19, 6, 1, 1, 21, 76, 93, 61, 26, 7, 1, 1, 29, 147, 225, 180, 94, 34, 8, 1, 1, 41, 277, 528, 498, 308, 136, 43, 9, 1, 1, 55, 509, 1198, 1323, 941, 487, 188, 53, 10, 1
OFFSET
2,5
LINKS
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
Reference gives recurrence.
T(n, k) = A375467(n, k) - A375467(n, k - 1). - Peter Luschny, Aug 30 2024
EXAMPLE
Triangle begins:
1;
1 1;
1 2 1;
1 4 3 1;
1 6 8 4 1;
1 10 18 13 5 1;
1 14 38 36 19 6 1;
thus there are 10 trees with 7 nodes and height 2.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> b((n-1)$2, k) -b((n-1)$2, k-1):
seq(seq(T(n, k), k=1..n-1), n=2..16); # Alois P. Heinz, Jul 31 2013
MATHEMATICA
Drop[Map[Select[#, # > 0 &] &,
Transpose[
Prepend[Table[
f[n_] :=
Nest[CoefficientList[
Series[Product[1/(1 - x^i)^#[[i]], {i, 1, Length[#]}], {x,
0, 10}], x] &, {1}, n]; f[m] - f[m - 1], {m, 2, 10}],
Prepend[Table[1, {10}], 0]]]], 1] // Grid (* Geoffrey Critzer, Aug 01 2013 *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, Sum[Binomial[b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k]-b[n-1, n-1, k-1]; Table[T[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 11 2014, after Alois P. Heinz *)
PROG
(Python)
def A034781(n, k): return A375467(n, k) - A375467(n, k - 1)
for n in range(2, 10): print([A034781(n, k) for k in range(2, n + 1)])
# Peter Luschny, Aug 30 2024
CROSSREFS
T(2n,n) = A245102(n), T(2n+1,n) = A245103(n).
Row sums give A000081.
Sequence in context: A060098 A161492 A177976 * A110470 A347699 A055080
KEYWORD
tabl,nonn,easy,nice
EXTENSIONS
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Sep 19 2003
STATUS
approved