login
A034075
a(0)=2; a(n) is the smallest k > a(n-1) such that the fractional part of k^(1/10) starts with n.
2
2, 3, 7, 14, 29, 58, 110, 202, 358, 614, 1668, 1750, 1834, 1923, 2015, 2111, 2211, 2316, 2425, 2538, 2656, 2780, 2908, 3042, 3181, 3326, 3477, 3633, 3797, 3967, 4143, 4327, 4518, 4716, 4923, 5137, 5360, 5591, 5832, 6082, 6341, 6610, 6889, 7179, 7480
OFFSET
0,1
FORMULA
For n > 0, a(n) = ceiling((d + n/10^d)^10) where d = 1 + floor(log_10(n)). - Jon E. Schoenfield, Nov 26 2017
EXAMPLE
a(7)=202 -> 202^(1/10) = 1.{7}0033751...;
a(8)=358 -> 358^(1/10) = 1.{8}0048000... and a(7)=202 < a(8)=358.
From Jon E. Schoenfield, Nov 26 2017: (Start)
n a(n) a(n)^(1/10)
-- ----- ---------------
0 2 1.{0}7177346...
1 3 1.{1}1612317...
2 7 1.{2}1481404...
3 14 1.{3}0200545...
4 29 1.{4}0036033...
5 58 1.{5}0086904...
6 110 1.{6}0007105...
7 202 1.{7}0033751...
8 358 1.{8}0048000...
9 614 1.{9}0027667...
10 1668 2.{10}000149...
11 1750 2.{11}010372...
12 1834 2.{12}001987...
...
99 57110 2.{99}000019...
100 81963 3.{100}00064...
101 82228 3.{101}00147... (End)
CROSSREFS
Sequence in context: A131666 A135258 A034065 * A281716 A192570 A019595
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Name edited by Jon E. Schoenfield, Nov 26 2017
STATUS
approved