login
A034074
a(0)=2; a(n) is the smallest k > a(n-1) such that the fractional part of k^(1/9) starts with n.
2
2, 3, 6, 11, 21, 39, 69, 119, 199, 323, 795, 829, 866, 903, 942, 982, 1024, 1067, 1113, 1159, 1208, 1258, 1310, 1364, 1420, 1478, 1539, 1601, 1665, 1732, 1802, 1873, 1948, 2024, 2104, 2186, 2271, 2360, 2451, 2545, 2642, 2743, 2847, 2955, 3066, 3181, 3300
OFFSET
0,1
FORMULA
For n > 0, a(n) = ceiling((d + n/10^d)^9) where d = 1 + floor(log_10(n)). - Jon E. Schoenfield, Dec 09 2017
EXAMPLE
a(9) = 323 -> 323^(1/9) = 1.{9}0020422...;
a(10) = 795 -> 795^(1/9) = 2.{10}021141... and a(9)=323 < a(10)=795.
From Jon E. Schoenfield, Dec 09 2017: (Start)
n a(n) a(n)^(1/9)
-- ------ ---------------
0 2 1.{0}8005973...
1 3 1.{1}2983096...
2 6 1.{2}2028493...
3 11 1.{3}0529988...
4 21 1.{4}0253353...
5 39 1.{5}0239786...
6 69 1.{6}0072440...
7 119 1.{7}0065542...
8 199 1.{8}0064508...
9 323 1.{9}0020422...
10 795 2.{10}021141...
11 829 2.{11}000671...
12 866 2.{12}026857...
...
99 19101 2.{99}001178...
100 26440 3.{100}00492...
101 26517 3.{101}00673... (End)
CROSSREFS
Sequence in context: A246699 A079969 A034064 * A018175 A316356 A049856
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Name edited by Jon E. Schoenfield, Dec 09 2017
STATUS
approved