login
A033959
Record number of steps to reach 1 in '3x+1' problem, corresponding to starting values in A033958.
4
0, 2, 5, 6, 7, 41, 42, 43, 44, 45, 46, 47, 52, 62, 65, 66, 76, 79, 87, 96, 98, 101, 102, 103, 113, 114, 119, 125, 129, 130, 138, 141, 142, 164, 166, 174, 189, 195, 196, 197, 207, 208, 209, 217, 222, 228, 248, 256, 257, 258, 263, 278, 357, 358, 359, 362, 370
OFFSET
1,2
COMMENTS
Only the 3x+1 steps, not the halving steps, are counted.
REFERENCES
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
MAPLE
A033959 := proc(n) local a, L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; L := L+1; fi; od: RETURN(L); end;
MATHEMATICA
f[ nn_ ] := Module[ {c, n}, c = 0; n = nn; While[ n != 1, If[ Mod[ n, 2 ] == 0, n /= 2, n = 3*n + 1; c++ ] ]; Return[ c ] ] maxx = -1; For[ n = 1, n <= 10^8, n++, Module[ {val}, val = f[ n ]; If[ val > maxx, maxx = val; Print[ n, " ", val ] ] ] ]
PROG
(Haskell)
a033959 n = a033959_list !! (n-1)
(a033959_list, a033958_list) = unzip $ (0, 1) : f 1 1 where
f i x | y > x = (y, 2 * i - 1) : f (i + 1) y
| otherwise = f (i + 1) x
where y = a075680 i
-- Reinhard Zumkeller, Jan 08 2014
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
More terms from Larry Reeves (larryr(AT)acm.org), Sep 27 2000
Offset corrected by Reinhard Zumkeller, Jan 08 2014
STATUS
approved