login
A033113
Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
17
1, 3, 10, 30, 91, 273, 820, 2460, 7381, 22143, 66430, 199290, 597871, 1793613, 5380840, 16142520, 48427561, 145282683, 435848050, 1307544150, 3922632451, 11767897353, 35303692060, 105911076180, 317733228541, 953199685623
OFFSET
1,2
COMMENTS
Written in base 3, this yields A056830. - M. F. Hasler, Oct 05 2018
FORMULA
a(n) = A039300(n)-1.
a(n)+a(n+1) = A003462(n+1).
a(n) = 3*a(n-1) + a(n-2) -3*a(n-3). - R. J. Mathar, Jun 28 2010
From Paul Barry, Nov 12 2003: (Start)
G.f.: x/((1-x)*(1+x)*(1-3*x)).
a(n) = 2*a(n-1) + 3*a(n-2) + 1.
Partial sums of A015518. (End)
E.g.f.: (1/2)*exp(x)*(sinh(x))^2. - Paul Barry, Mar 12 2003
a(n) = Sum_{k=0..floor(n/2)} C(n+2, 2k+2)*4^k. - Paul Barry, Aug 24 2003
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*3^j. - Paul Barry, Nov 12 2003
Convolution of A000244 and A059841 (3^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*3^k/2. - Paul Barry, Jul 19 2004
a(n) = round(3^(n+1)/8) = floor((3^(n+1)-1)/8) = ceiling((3^(n+1)-3)/8) = round((3^(n+1)-3)/8). a(n) = a(n-2) + 3^(n-1), n > 2. - Mircea Merca, Dec 27 2010
a(n) = floor((3^(n+1))/4) / 2 = A081251(n)/2, n >= 1. - Wolfdieter Lang, Apr 13 2012
MAPLE
a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
g:=x*(1/(1-3*x)/(1-x))/(1+x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=1..30); # Zerinvary Lajos, Jan 11 2009
A033113 := proc(n) (9*3^(n-1)-(-1)^n-2)/8 ; end proc: # R. J. Mathar, Jan 08 2011
MATHEMATICA
Join[{a=1, b=3}, Table[c=2*b+3*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
Module[{nn=30, d}, d=PadRight[{}, nn, {1, 0}]; Table[FromDigits[Take[d, n], 3], {n, nn}]] (* or *) LinearRecurrence[{3, 1, -3}, {1, 3, 10}, 30] (* Harvey P. Dale, May 24 2014 *)
PROG
(PARI) a(n)=3^n*3\8 \\ Simplified by M. F. Hasler, Oct 06 2018
(PARI) A033113(n)=3^(n+1)>>3 \\ M. F. Hasler, Oct 05 2018
(Magma) [Round(3^(n+1)/8): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Sequence in context: A014531 A062107 A269800 * A360714 A290718 A300421
KEYWORD
nonn,base,easy
STATUS
approved