login
A029956
Numbers that are palindromic in base 11.
10
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 488, 499
OFFSET
1,3
COMMENTS
Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020
LINKS
Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
FORMULA
Sum_{n>=2} 1/a(n) = 3.4369816... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
MATHEMATICA
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 11], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
pal11Q[n_]:=Module[{idn11=IntegerDigits[n, 11]}, idn11==Reverse[idn11]]; Select[Range[0, 500], pal11Q] (* Harvey P. Dale, May 11 2015 *)
Select[Range[0, 500], PalindromeQ[IntegerDigits[#, 11]] &] (* Michael De Vlieger, May 12 2017, Version 10.3 *)
PROG
(PARI) ispal(n, b)=my(tmp, d=log(n+.5)\log(b)-1); while(d, tmp=n%b; n\=b; if(n\b^d!=tmp, return(0)); n=n%(b^d); d-=2; ); d<0||n%(b+1)==0
is(n)=ispal(n, 11) \\ Charles R Greathouse IV, Aug 21 2012
(PARI) ispal(n, b=11)=my(d=digits(n, b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 04 2020
(Sage)
[n for n in (0..499) if Word(n.digits(11)).is_palindrome()] # Peter Luschny, Sep 13 2018
(Python)
from gmpy2 import digits
from sympy import integer_log
def A029956(n):
if n == 1: return 0
y = 11*(x:=11**integer_log(n>>1, 11)[0])
return int((c:=n-x)*x+int(digits(c, 11)[-2::-1]or'0', 11) if n<x+y else (c:=n-y)*y+int(digits(c, 11)[-1::-1]or'0', 11)) # Chai Wah Wu, Jun 14 2024
CROSSREFS
Cf. A002113 (base 10), A029957 (base 12).
Sequence in context: A048308 A043714 A296744 * A297274 A048322 A048335
KEYWORD
nonn,base,easy
STATUS
approved