login
A029731
Palindromic in bases 10 and 16.
39
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 353, 626, 787, 979, 1991, 3003, 39593, 41514, 90209, 94049, 96369, 98689, 333333, 512215, 666666, 749947, 845548, 1612161, 2485842, 5614165, 6487846, 9616169, 67433476, 90999909, 94355349, 94544549, 119919911
OFFSET
1,3
LINKS
MAPLE
N:= 9: # to get all terms with up to N decimal digits
qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc:
digrev:= proc(k, b) local L, n; L:= convert(k, base, b); n:= nops(L); add(L[i]*b^(n-i), i=1..n); end proc:
Res:= $0..9:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(qpali(n*10^m + digrev(n, 10), 16), n=10^(m-1)..10^m-1);
else
m:= (d-1)/2;
Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n, 10), 16), y=0..9), n=10^(m-1)..10^m-1);
fi
od:
Res; # Robert Israel, Nov 23 2014
MATHEMATICA
A029731Q = PalindromeQ@# && IntegerReverse[#, 16] == # &; Select[Range[10^5], A029731Q] (* JungHwan Min, Mar 02 2017 *)
Select[Range[10^7], Times @@ Boole@ Map[# == Reverse@ # &, {IntegerDigits@ #, IntegerDigits[#, 16]}] > 0 &] (* Michael De Vlieger, Mar 03 2017 *)
PROG
(Python)
def palQ16(n): # check if n is a palindrome in base 16
s = hex(n)[2:]
return s == s[::-1]
def palQgen10(l): # unordered generator of palindromes of length <= 2*l
if l > 0:
yield 0
for x in range(1, 10**l):
s = str(x)
yield int(s+s[-2::-1])
yield int(s+s[::-1])
A029731_list = sorted([n for n in palQgen10(6) if palQ16(n)])
# Chai Wah Wu, Nov 25 2014
KEYWORD
nonn,base
STATUS
approved