login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028365
Order of general affine group over GF(2), AGL(n,2).
9
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
OFFSET
0,2
COMMENTS
For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).
LINKS
Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
Putnam Competition 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
FORMULA
a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^A000217(n) * A005329(n).
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)
MAPLE
A028365 := n->2^n*product(2^n-2^'i', 'i'=0..n-1); # version 1
A028365 := n->product(2^'j'-1, 'j'=1..n)*2^binomial(n+1, 2); # version 2
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n, 20}] (* Harvey P. Dale, Aug 03 2011 *)
(* Next, the connection with Vandermonde determinants *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203303 *)
Table[v[n+1]/v[n], {n, z}] (* A028365 *)
Table[v[n]*v[n+2]/(2*v[n+1])^2, {n, z}] (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
Table[(-1)^n*2^Binomial[n+1, 2]*QPochhammer[2, 2, n], {n, 0, 20}] (* G. C. Greubel, Aug 31 2023 *)
PROG
(PARI) a(n)=if(n<0, 0, prod(k=1, n, 2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
(Magma) [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
(SageMath) [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023
KEYWORD
nonn,easy,nice
STATUS
approved