OFFSET
0,2
COMMENTS
The q-analog of double factorials (A000165) evaluated at q=2. - Michael Somos, Sep 12 2014
3^n*5^(floor(n/2))|a(n) for n>=1. - G. C. Greubel, Nov 21 2015
Given probability p = 1/4^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A053763(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A100221 ~ 0.3114625. - Bob Selcoe, Mar 01 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..50
FORMULA
a(n) ~ c * 2^(n*(n+1)), where c = Product_{k>=1} (1-1/4^k) = A100221 = 0.688537537120339715456514357293508184675549819378... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 4^(binomial(n+1,2))*(1/4;1/4)_{n} = (4; 4)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 4^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 4^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100221. - Amiram Eldar, May 07 2023
MATHEMATICA
A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
PROG
(PARI) a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
(Magma) [1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
(SageMath)
from sage.combinat.q_analogues import q_pochhammer
def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
[A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved