OFFSET
1,2
COMMENTS
This is the lower s-Wythoff sequence, where s(n)=n+1.
See A184117 for the definition of lower and upper s-Wythoff sequences. The first few terms of a and its complement, b=A026274, are obtained generated as follows:
s=(2,3,4,5,6,...);
a=(1,2,4,6,7,...)=A026273;
b=(3,5,8,11,13,...)=A026274.
Briefly: b=s+a, and a=mex="least missing".
From Michel Dekking, Mar 12 2018: (Start)
One has r*(n-2*r+3) = n*r-2r^2+3*r = (n+1)*r-2.
So a(n) = (n+1)*r-2, and we see that this sequence is simply the Beatty sequence of the golden ratio, shifted spatially and temporally. In other words: if w = A000201 = 1,3,4,6,8,9,11,12,14,... is the lower Wythoff sequence, then a(n) = w(n+2) - 2.
(N.B. As so often, there is the 'offset 0 vs 1 argument', w = A000201 has offset 1; it would have been better to give (a(n)) offset 1, too).
This observation also gives an answer to Lenormand's question, and a simple proof of Mathar's conjecture in A059426.
(End)
FORMULA
MATHEMATICA
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Clark Kimberling, Jan 14 2011
STATUS
approved