login
A023146
Numbers k such that prime(k) == 4 (mod k).
13
1, 75, 77, 637331, 637333, 637341, 637343, 27067053, 179992917, 8179002205, 2636913002917, 6201265271239157, 6201265271239347, 6201265271239413, 6201265271239981, 6201265271240331, 6201265271240341, 2159986889494445405, 2159986889494445525, 2159986889494445615
OFFSET
1,2
EXAMPLE
The 75th prime is 379 and 379 == 4 (mod 75). Hence 75 is in the sequence.
The 76th prime is 383, but 383 == 3, not 4, (mod 76). So 76 is not in the sequence.
MATHEMATICA
nextPrime[n_] := Block[{k = n + 1}, While[!PrimeQ[k], k++]; k]; p = 1; Do[If[Mod[p = nextPrime[p], n] == 4, Print[n]], {n, 1, 10^9}] (* Robert G. Wilson v, Feb 18 2004 *)
Select[Range[1000], Mod[Prime[#], #] == 4 &] (* Alonso del Arte, Nov 16 2018 *)
PROG
(Sage)
def A023146(max) :
terms = []
p = 2
for n in range(1, max+1) :
if (p - 4) % n == 0 : terms.append(n)
p = next_prime(p)
return terms
# Eric M. Schmidt, Feb 05 2013
KEYWORD
nonn
EXTENSIONS
More terms from Robert G. Wilson v, Feb 18 2004
2 more terms from Giovanni Resta and Robert G. Wilson v, Feb 22 2006
First term inserted by Eric M. Schmidt, Feb 05 2013
a(11)-a(20) from Giovanni Resta, Feb 23 2020
STATUS
approved