login
A022558
Number of permutations of length n avoiding the pattern 1342.
14
1, 1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, 3475090, 22214707, 144640291, 956560748, 6411521056, 43478151737, 297864793993, 2059159989914, 14350039389022, 100726680316559, 711630547589023, 5057282786190872, 36132861123763276, 259423620328055093
OFFSET
0,3
COMMENTS
Differs from A117156 which counts permutations avoiding the *consecutive* pattern 1342. - Ray Chandler, Dec 06 2011
Also, number of permutation of length n avoiding the pattern 3142 (see Stankova (1994) below). - Alexander Burstein, Aug 09 2013
Conjecture: a(n) is the number of permutations of length n simultaneously avoiding patterns 2143 and 415263. - Alexander Burstein, Mar 21 2019
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 768, Th. 12.1.14.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.48.
LINKS
Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
Alexander Burstein and Jay Pantone, Two examples of unbalanced Wilf-equivalence, J. Combin. 6 (2015), no. 1-2, 55-67.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
A. R. Conway and A. J. Guttmann, On 1324-avoiding permutations, Adv. Appl. Math. 64 (2015), 50-69.
A. L. L. Gao, S. Kitaev, and P. B. Zhang. On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
C. Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint arXiv:1410.2657 [math.CO], 2014.
Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
W. Mlotkowski, K. A. Penson, A Fuss-type family of positive definite sequences, arXiv:1507.07312 (2015), eq. (36).
Z. E. Stankova, Forbidden subsequences, Discrete Math., 132 (1994), no. 1-3, 291-316.
Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001. See Fig. 11.
FORMULA
a(n) = (7*n^2-3*n-2)/2 * (-1)^(n-1) + 3*Sum_{i=2..n} 2^(i+1) * (2*i-4)!/(i!*(i-2)!) * binomial(n-i+2, 2) * (-1)^(n-i).
G.f.: 32*x/(1 + 20*x - 8*x^2 - (1 - 8*x)^(3/2)). - Emeric Deutsch, Mar 13 2004
Recurrence: n*a(n) = (7*n-22)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(3*n+6)/(243*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Oct 07 2012
EXAMPLE
a(4) = 23 because obviously all permutations of length 4 with the exception of 1342 avoid 1342.
MAPLE
a := proc (n) options operator, arrow: (1/2)*(-1)^(n-1)*(7*n^2-3*n-2)+3*(sum((-1)^(n-i)*2^(i+1)*factorial(2*i-4)*binomial(n-i+2, 2)/(factorial(i)*factorial(i-2)), i = 2 .. n)) end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Oct 15 2014
MATHEMATICA
Table[SeriesCoefficient[32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2012 *)
Table[1/2*(-1)^(n-1) * (-2-3*n+7*n^2) + 1/4*(-1)^n * (1+n) * (-2-13*n+(n+2) * Hypergeometric2F1[-3/2, -n, -2-n, -8]), {n, 0, 20}] (* Vaclav Kotesovec, Aug 24 2014 *)
PROG
(PARI) x='x+O('x^66); Vec( 32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)) ) \\ Joerg Arndt, May 04 2013
CROSSREFS
Essentially the same as A004040.
Cf. A117158.
A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).
Sequence in context: A226995 A301897 A374546 * A004040 A216040 A005802
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Minor edits by Vaclav Kotesovec, Aug 24 2014
STATUS
approved