OFFSET
0,5
COMMENTS
The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157832(n,k). - R. J. Mathar, Mar 12 2013
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
G. C. Greubel, Rows n=0..50 of triangle, flattened
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
EXAMPLE
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 806, 156, 1;
1, 781, 20306, 20306, 781, 1;
1, 3906, 508431, 2558556, 508431, 3906, 1;
1, 19531, 12714681, 320327931, 320327931, 12714681, 19531, 1,
MAPLE
MATHEMATICA
p[n_] := Product[5^i-1, {i, 1, n}]; t[n_, k_] := p[n]/(p[k]*p[n-k]); Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
Table[QBinomial[n, k, 5], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 5; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
PROG
(PARI) {q=5; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved