login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022009
Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20).
40
11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211, 187029371, 190514321, 198453371
OFFSET
1,1
COMMENTS
All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015
Also the terms k of A276848 for which k == 1 (mod 10), see the comment in A276848 and A276826. All terms are obviously also congruent to 11 (modulo 30). - Vladimir Shevelev, Sep 21 2016
See A343637 for the least prime septuplets > 10^n, n >= 0. - M. F. Hasler, Aug 04 2021
LINKS
Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Matt C. Anderson)
Matt C. Anderson, table of prime k-tuplets.
Norman Luhn, 1 million terms, zipped archive.
Vladimir Shevelev and Peter J. C. Moses, Constellations of primes generated by twin primes, arXiv:1610.03385 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Prime Constellation.
FORMULA
a(n) = 210*A182387(n) + 11. - Hugo Pfoertner, Nov 18 2022
MATHEMATICA
Transpose[Select[Partition[Prime[Range[10400000]], 7, 1], Differences[#] == {2, 4, 2, 4, 6, 2}&]][[1]] (* Harvey P. Dale, Jul 13 2014 *)
Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
PROG
(PARI) nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
is(n)=if(n%30!=11 || !isprime(n) || !isprime(n+2), return(0)); my(p=n, q=n+2, k=2, f); while(p!=q && q-p<7, f=if(isprime(k++), nextprime, nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 30 2016
(PARI) select( {is_A022009(n)=n%210==11&&!foreach([20, 18, 12, 8, 6, 2, 0], d, isprime(n+d)||return)}, [11+k*210|k<-[0..10^5]]) \\ M. F. Hasler, Aug 04 2021
(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e9, 2, 6, 8, 12, 18, 20); # Dana Jacobsen, Sep 30 2015
(Magma) [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [2, 6, 8, 12, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
CROSSREFS
Cf. A022010 (septuplets of the second type), A182387, A276826, A276848, A343637 (septuplet following 10^n).
Sequence in context: A055311 A116622 A013794 * A201249 A144837 A324267
KEYWORD
nonn
STATUS
approved