login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020527
2nd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
2
1, 13, 73, 337, 1441, 5953, 24193, 97537, 391681, 1569793, 6285313, 25153537, 100638721, 402604033, 1610514433, 6442254337, 25769410561, 103078428673, 412315287553, 1649264295937, 6597063475201, 26388266483713, 105553091100673, 422212414734337, 1688849759600641, 6755399239729153
OFFSET
0,2
FORMULA
a(n) = 6*(4^n - 2^n) + 1. - Ralf Stephan, Apr 06 2004
G.f.: (-1 - 6*x + 4*x^2)/((x-1)*(2*x-1)*(4*x-1)). - R. J. Mathar, Jun 11 2013
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(x)*(6*exp(x)*(exp(2*x) - 1) + 1).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n > 2. (End)
MAPLE
seq(6*bernoulli(2, 2^i), i=0..24);
MATHEMATICA
6*BernoulliB[2, 2^Range[0, 30]] (* Paolo Xausa, Sep 16 2024 *)
PROG
(Magma) [6 * (4^n - 2^n) + 1: n in [0..40]]; // Vincenzo Librandi, Apr 25 2011
CROSSREFS
Cf. A020528.
Sequence in context: A107963 A006230 A066110 * A146618 A220414 A139157
KEYWORD
nonn,easy
AUTHOR
STATUS
approved