Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 16 2024 05:55:58
%S 1,13,73,337,1441,5953,24193,97537,391681,1569793,6285313,25153537,
%T 100638721,402604033,1610514433,6442254337,25769410561,103078428673,
%U 412315287553,1649264295937,6597063475201,26388266483713,105553091100673,422212414734337,1688849759600641,6755399239729153
%N 2nd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).
%H Vincenzo Librandi, <a href="/A020527/b020527.txt">Table of n, a(n) for n = 0..170</a>
%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).
%F a(n) = 6*(4^n - 2^n) + 1. - _Ralf Stephan_, Apr 06 2004
%F G.f.: (-1 - 6*x + 4*x^2)/((x-1)*(2*x-1)*(4*x-1)). - _R. J. Mathar_, Jun 11 2013
%F From _Elmo R. Oliveira_, Sep 12 2024: (Start)
%F E.g.f.: exp(x)*(6*exp(x)*(exp(2*x) - 1) + 1).
%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n > 2. (End)
%p seq(6*bernoulli(2,2^i),i=0..24);
%t 6*BernoulliB[2, 2^Range[0, 30]] (* _Paolo Xausa_, Sep 16 2024 *)
%o (Magma) [6 * (4^n - 2^n) + 1: n in [0..40]]; // _Vincenzo Librandi_, Apr 25 2011
%Y Cf. A020528.
%K nonn,easy
%O 0,2
%A _Simon Plouffe_