login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019528
Poincaré series [or Poincare series] for depths of roots in a certain root system.
1
5, 5, 6, 8, 11, 16, 25, 38, 59, 93, 148, 235, 376, 602, 966, 1550, 2491, 4003, 6436, 10348, 16643, 26766, 43052, 69247, 111387, 179169, 288207, 463601, 745744, 1199593, 1929661, 3104041, 4993156, 8031978, 12920238, 20783483, 33432314, 53779215
OFFSET
1,1
REFERENCES
Posting to sci.math.research by dima(AT)win.tue.nl (Dmitrii V. Pasechnik), Oct 28 1996.
LINKS
D. Pasechnik, Poincare series for the depths of roots in a root system, Sci. Math. Research posting Oct 28 1996.
FORMULA
a(n+1) = sum_{i=n-11}^n v(i)*a(i), where v = [ 0,0,-1,-1,-2,-1,0,2,2,1,0 ].
G.f.: x*(x^10+3*x^9+x^8-x^7-9*x^6-14*x^5-15*x^4-7*x^3+x^2+5*x+5) / (x^9+x^8+2*x^7+x^6-2*x^4-2*x^3-x^2+1). [Colin Barker, Nov 28 2012]
MATHEMATICA
CoefficientList[Series[(x^10 + 3 x^9 + x^8 - x^7 - 9 x^6 - 14 x^5 - 15 x^4 - 7 x^3 + x^2 + 5 x + 5)/ (x^9 + x^8 + 2 x^7 + x^6 - 2 x^4 - 2 x^3 - x^2 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 16 2013 *)
CROSSREFS
Sequence in context: A153444 A175476 A376743 * A191695 A298915 A008945
KEYWORD
nonn,easy
STATUS
approved