login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019527
Poincaré series [or Poincare series] for depths of roots in a certain root system.
1
4, 4, 5, 6, 8, 11, 15, 21, 30, 43, 62, 90, 131, 191, 279, 408, 597, 874, 1280, 1875, 2747, 4025, 5898, 8643, 12666, 18562, 27203, 39867, 58427, 85628, 125493, 183918, 269544, 395035, 578951, 848493, 1243526, 1822475, 2670966, 3914490, 5736963, 8407927
OFFSET
1,1
REFERENCES
Posting to sci.math.research by dima(AT)win.tue.nl (Dmitrii V. Pasechnik), Oct 28 1996.
LINKS
D. Pasechnik, Poincare series for the depths of roots in a root system, Sci. Math. Research posting Oct 28 1996.
FORMULA
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4), for n>5.
G.f.: x*(x^4-4*x^3+x^2-4*x+4) / ((x-1)*(x^3+x-1)). - Colin Barker, Sep 27 2013
a(n) = a(n-1) + a(n-3) - 2, for n>4. - Greg Dresden, Feb 09 2020
MATHEMATICA
CoefficientList[Series[(x^4 - 4 x^3 + x^2 - 4 x + 4)/((x - 1) (x^3 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 16 2013 *)
LinearRecurrence[{2, -1, 1, -1}, {4, 4, 5, 6, 8}, 50] (* Harvey P. Dale, Oct 11 2019 *)
PROG
(PARI) Vec(x*(x^4-4*x^3+x^2-4*x+4)/((x-1)*(x^3+x-1)) + O(x^100)) \\ Colin Barker, Sep 27 2013
CROSSREFS
Sequence in context: A243427 A085581 A137902 * A062836 A137903 A091349
KEYWORD
nonn,easy
EXTENSIONS
More terms from Colin Barker, Sep 27 2013
STATUS
approved