OFFSET
0,20
COMMENTS
Number of compositions (ordered partitions) of n into parts 9, 10, 11 and 12. - Ilya Gutkovskiy, May 27 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1).
FORMULA
a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=1, a(10)=1, a(11)=1; for n>11, a(n) = a(n-9)+a(n-10)+a(n-11)+a(n-12). - Harvey P. Dale, Apr 29 2013
MATHEMATICA
CoefficientList[Series[1/(1-x^9 -x^10 -x^11 -x^12), {x, 0, 70}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1}, 70] (* Harvey P. Dale, Apr 29 2013 *)
CoefficientList[Series[1/(1 - Total[x^Range[9, 12]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
PROG
(Magma)
m:=70; R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12))); // Vincenzo Librandi, Jul 01 2013
(SageMath)
def A017879_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(13)) ).list()
A017879_list(85) # G. C. Greubel, Sep 25 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved