login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015161
Theta series of 17-dimensional lattice Q_17(6)^{+6}.
8
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 240, 0, 0, 1020, 816, 0, 0, 2040, 0, 0, 0, 0, 17952, 0, 0, 34782, 20400, 0, 0, 41956, 0, 0, 0, 0, 208080, 0, 0, 376992, 236912, 0, 0, 362406, 0, 0, 0, 0, 1618944, 0, 0, 2306832, 1236240, 0, 0, 1933920, 0, 0, 0, 0, 6613680, 0, 0, 9891384, 5861328, 0, 0, 7591792, 0, 0, 0, 0, 26689728, 0, 0, 33439476, 17201280, 0, 0, 24124428, 0, 0, 0, 0, 69759840, 0, 0, 95442624, 55003296, 0, 0, 65640978, 0, 0, 0, 0, 204207264
OFFSET
0,18
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices II: Subgroups of GL(n,Z), Proc. Royal Soc. London, A 419 (1988), 29-68.
Gheorghe Coserea, Gram matrix.
G. Nebe and N. J. A. Sloane, Home page for this lattice
W. Plesken, Finite Unimodular Groups of Prime Degree and Circulants, J. Algebra, vol. 97 (1985), pp. 286-312.
PROG
(PARI) \\ system("wget https://oeis.org/A015161/a015161.txt");
g = matconcat(read("a015161.txt")~);
seq(N, g, flag=0) = concat(1, 2*Vec(qfrep(g, N, flag)));
seq(80, g) \\ Gheorghe Coserea, Nov 28 2018
(PARI)
GramMatrix()={my(p=[17, -1, -1, -1, -7, -1, -7, 5, 5, 5, 5, -7, -1, -7, -1, -1, -1]); matrix(#p, #p, i, j, p[(i-j) %#p + 1])}
a(n)={if(n==0, 1, 2*qfrep(GramMatrix(), n, 0)[n])} \\ Andrew Howroyd, Nov 29 2018
KEYWORD
nonn
EXTENSIONS
More terms from Gheorghe Coserea, Nov 28 2018
STATUS
approved