Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Feb 27 2023 18:06:29
%S 1,1,5,93,6477,1733677,1816333805,7526310334829,124031223014725741,
%T 8152285307423733458541,2140200604371078953284092525,
%U 2245805993494514875022552272042605,9423041917569791458584837551185555483245,158121354267437848361217045222877873550507035245
%N q-Catalan numbers (binomial version) for q=2.
%H G. C. Greubel, <a href="/A015030/b015030.txt">Table of n, a(n) for n = 0..57</a>
%F a(n) = binomial(2*n, n, q)/(n+1)_q, where binomial(n,m,q) is the q-binomial coefficient, with q=2.
%F a(n) = ((1-q)/(1-q^(n+1)))*Product_{k=0..(n-1)} (1-q^(2*n-k))/(1-q^(k+1)), with q=2. - _G. C. Greubel_, Nov 11 2018
%F a(n) ~ c * 2^(n^2-n-1), where c = 3.462746619455... = A065446. - _Vladimir Reshetnikov_, Sep 26 2021
%F a(n) = (-1)^n * A136097(n). - _Michael Somos_, Jan 10 2023
%F a(n) = Product_{1 <= i <= j <= n-1} (2^(i+j+2) - 1)/(2^(i+j) - 1). - _Peter Bala_, Feb 24 2023
%t Table[QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *)
%o (PARI) q=2; for(n=0, 20, print1(((1-q)/(1-q^(n+1)))*prod(k=0,n-1, (1-q^(2*n-k))/(1-q^(k+1))), ", ")) \\ _G. C. Greubel_, Nov 11 2018
%o (Magma) q:=2; [1] cat [((1-q)/(1-q^(n+1)))*(&*[(1-q^(2*n-k))/(1-q^(k+1)): k in [0..n-1]]): n in [1..20]]; // _G. C. Greubel_, Nov 11 2018
%o (Sage)
%o from sage.combinat.q_analogues import q_catalan_number
%o [q_catalan_number(n, 2) for n in range(20)] # _G. C. Greubel_, Nov 21 2018
%Y Cf. A065446, A136097.
%Y q-Catalan numbers for q = 3..12 and q = -2..-11: A015033 - A015035, A015037 - A015042, A015055 - A015058, A015060 - A015062, A015072, A015077 - A015079.
%K nonn,easy
%O 0,3
%A _Olivier Gérard_