OFFSET
2,1
COMMENTS
In other words, a(n), n >= 2, is the least k such that prime(n) divides 2^k-1.
Concerning the complexity of computing this sequence, see for example Bach and Shallit, p. 115, exercise 8.
Also A002326((p_n-1)/2). Conjecture: If p_n is not a Wieferich prime (1093, 3511, ...) then A002326(((p_n)^k-1)/2) = a(n)*(p_n)^(k-1). - Vladimir Shevelev, May 26 2008
If for distinct i,j,...,k we have a(i)=a(j)=...=a(k) then the number N = p_i*p_j*...*p_k is in A001262 and moreover A137576((N-1)/2) = N. For example, a(16)=a(37)=a(255)=52. Therefore we could take N = p_16*p_37*p_255 = 53*157*1613 = 13421773. - Vladimir Shevelev, Jun 14 2008
Also degree of the irreducible polynomial factors for the polynomial (x^p+1)/(x+1) over GF(2), where p is the n-th prime. - V. Raman, Oct 04 2012
Is this the same as the smallest k > 1 not already in the sequence such that p = prime(n) is a factor of 2^k-1 (A270600)? If the answer is yes, is the sequence a permutation of the positive integers > 1? - Felix Fröhlich, Feb 21 2016. Answer: No, it is easy to prove that 6 is missing and obviously 11 appears twice. - N. J. A. Sloane, Feb 21 2016
pi(A112927(m)) is the index at which a given number m first appears in this sequence. - M. F. Hasler, Feb 21 2016
REFERENCES
E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I.
Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966; Table 48, page 98, "Exponents to Which a Belongs, MOD p and MOD p^n.
John H. Conway and Richard Guy, "The Book of Numbers", Springer-Verlag, 1996; p. 166: "How does the Cycle Length Change with the Base?". [From Gary W. Adamson, Aug 22 2009]
S. K. Sehgal, Group rings, pp. 455-541 in Handbook of Algebra, Vol. 3, Elsevier, 2003; see p. 493.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..10001 (terms 2..1001 from Nick Hobson, terms 1002..5001 from Zak Seidov)
Gary W. Adamson, Further comments.
O. N. Karpenkov, On examples of difference operators for {0,1}-valued functions over finite sets, Funct. Anal. Other Math. 1 (2006), 175-180.
O. N. Karpenkov, On examples of difference operators for {0,1}-valued functions over finite sets, arXiv:math/0611940 [math.CO], 2006.
FORMULA
EXAMPLE
2^2 == 1 (mod 3) and so a(2) = 2;
2^4 == 1 (mod 5) and so a(3) = 4;
2^3 == 1 (mod 7) and so a(4) = 3;
2^10 == 1 (mod 11) and so a(5) = 10; etc.
[Conway & Guy, p. 166]: Referring to the work of Euler, 1/13 in base 2 = 0.000100111011...; (cycle length of 12). - Gary W. Adamson, Aug 22 2009
MAPLE
with(numtheory): [ seq(order(2, ithprime(n)), n=2..60) ];
MATHEMATICA
Reap[Do[p=Prime[i]; Do[If[PowerMod[2, k, p]==1, Print[{i, k}]; Sow[{i, k}]; Goto[ni]], {k, 1, 10^6}]; Label[ni], {i, 2, 5001}]][[2, 1]] (* Zak Seidov, Jan 26 2009 *)
Table[MultiplicativeOrder[2, Prime[n]], {n, 2, 70}] (* Jean-François Alcover, Dec 10 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, k=1; while((2^k-1)%prime(n)>0, k++); k)
(PARI) A014664(n)=znorder(Mod(2, prime(n))) \\ Nick Hobson, Jan 08 2007, edited by M. F. Hasler, Feb 21 2016
(PARI) forprime(p=3, 800, print(factormod((x^p+1)/(x+1), 2, 1)[1, 1])) \\ V. Raman, Oct 04 2012
(GAP) P:=Filtered([1..350], IsPrime);; a:=List([2..Length(P)], n->OrderMod(2, P[n]));; Print(a); # Muniru A Asiru, Jan 29 2019
(Python)
from sympy import n_order, prime
def A014664(n): return n_order(2, prime(n)) # Chai Wah Wu, Nov 09 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Benoit Cloitre, Apr 11 2003
STATUS
approved