login
A014507
Number of digraphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.
19
1, 2, 13, 162, 3075, 80978, 2784067, 119971162, 6289972169, 392257225754, 28582571639293, 2398695602082442, 229094801646110203, 24652935339990534970, 2963620352166634246995, 395067805289398293647026, 58025593661340099613984593, 9336949406574071339557552946
OFFSET
0,2
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(2*k). - Vladeta Jovovic, Jun 21 2003
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^2)/n!. - Paul D. Hanna, Jul 03 2011
a(n) = n!*exp(-1)*Sum_{k>=sqrt(n)} binomial(k^2,n)/k!. - Paul D. Hanna, Jul 03 2011
MAPLE
A014507 := proc(n)
add(combinat[stirling1](n, k)*combinat[bell](2*k), k=0..n) ;
end proc:
seq(A014507(n), n=0..10) ; # R. J. Mathar, Apr 30 2017
MATHEMATICA
a[n_] := Sum[StirlingS1[n, k]*BellB[2*k], {k, 0, n}];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jan 21 2018, from Vladeta Jovovic's formula *)
PROG
(PARI) /* From Vladeta Jovovic's formula: */
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))}
CROSSREFS
Sequence in context: A291140 A380016 A192563 * A132614 A187927 A252766
KEYWORD
nonn
AUTHOR
Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)
STATUS
approved