login
A010843
Incomplete Gamma Function at -3.
7
1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
FORMULA
E.g.f.: exp(-3x)/(1-x). - Michael Somos, Mar 06 2004
a(0) = 1 and for n>0, a(n) is the permanent of the n X n matrix with -2's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*(-2)^k ). a(n) = Sum(k=0..n, A008279(n, k)*(-3)^(n-k) ). - Philippe Deléham, Dec 15 2003
G.f.: hypergeom([1,1],[],x/(1+3*x))/(1+3*x). - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 13 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) ~ n! * exp(-3). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-3)^(n-1)*hypergeom([1, 1-n], [], 1/3). - Vladimir Reshetnikov, Oct 18 2015
a(n) = KummerU(-n, -n, -3). - Peter Luschny, May 10 2022
MAPLE
a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
MATHEMATICA
Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x), n)) /* Michael Somos, Mar 06 2004 */
(PARI) a(n)=local(A, p); if(n<1, n==0, A=matrix(n, n, i, j, 1-3*(i==j)); sum(i=1, n!, if(p=numtoperm(n, i), prod(j=1, n, A[j, p[j]])))) /* Michael Somos, Mar 06 2004 */
(Sage)
@CachedFunction
def A010843(n):
if (n) == 1 : return 1
return (n-1)*A010843(n-1)+(-3)^(n-1)
[A010843(i) for i in (1..22)] # Peter Luschny, Oct 17 2012
KEYWORD
sign
AUTHOR
STATUS
approved