OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 29), L(1, 29), P(1, 29), T(1, 29). Essentially same as Pisot sequences E(29, 841), L(29, 841), P(29, 841), T(29, 841). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 29-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(29*n) = 29*n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (29).
FORMULA
G.f.: 1/(1-29*x). - Philippe Deléham, Nov 24 2008
a(n) = 29^n; a(n) = 29*a(n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
G.f.: (G(0)-2)/(9*x), where G(k)= 1 + 1/(1 - x*(9*k-9)/(x*(9*k+20) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
MAPLE
MATHEMATICA
29^Range[0, 20] (* Harvey P. Dale, Jul 19 2011 *)
PROG
(Sage) [29^n for n in (1..17)] # Zerinvary Lajos, Apr 29 2009
(Magma) [29^n: n in [0..30]]; // Vincenzo Librandi, Nov 21 2010
(Maxima) makelist(29^n, n, 0, 30); /* Martin Ettl, Nov 07 2012 */
(PARI) a(n)=29^n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved