OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 479
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014
Index entries for linear recurrences with constant coefficients, signature (2,0,0,1).
FORMULA
G.f.: 1/(1-2*x-x^4). - Philippe Deléham, Dec 02 2006
a(n) = Sum_{m=0..n} Sum_{j=0..(n-m)/3} binomial(n-m+(-3)*j,j)*binomial(n-3*j,m). - Vladimir Kruchinin, May 23 2011
O.g.f.: exp( Sum {n>=1} ( (1 + sqrt(1 + x^2))^n + (1 - sqrt(1 + x^2))^n ) * x^n/n ). Cf. A008998. - Peter Bala, Dec 22 2014
MAPLE
MATHEMATICA
LinearRecurrence[{2, 0, 0, 1}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, May 09 2012 *)
CoefficientList[Series[1/(1-2x-x^4), {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2012 *)
PROG
(Maxima) a(n):=sum(sum(binomial(n-m+(-3)*j, j)*binomial(n-3*j, m), j, 0, (n-m)/3), m, 0, n); /* Vladimir Kruchinin, May 23 2011 */
(Magma) I:=[1, 2, 4, 8]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 09 2012
(PARI) my(x='x+O('x^40)); Vec(1/(1-2*x-x^4)) \\ G. C. Greubel, Jun 12 2019
(Sage) (1/(1-2*x-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
(GAP) a:=[1, 2, 4, 8];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved