login
A008559
a(1)=2; thereafter, convert a(n-1) from base 10 to base 2 but regard the result as a base 10 number.
11
2, 10, 1010, 1111110010, 1000010001110100011000101111010
OFFSET
1,1
COMMENTS
The previous number is converted to binary digits and then the digits are regarded as decimal digits in the next number in the sequence. - Michael Somos, May 16 2014
The next term has 100 digits. - Harvey P. Dale, Jul 16 2011
The number of decimal digits of a(n) is A242347(n). - Robert G. Wilson v, Jul 10 2013
Log(a(n)) / log(a(n-1)) = ~1/log_10(2) = A020862. - Robert G. Wilson v, Jul 10 2013
REFERENCES
Clifford Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.
LINKS
MAPLE
f:=proc(n) local i, j, r; i:=convert(n, base, 2); j:=add(i[r]*10^(r-1), r=1..nops(i)); end;
g:=proc(n, M) global f; local a, b, t1; a:=n; t1:=[a]; for i from 1 to M do b:=f(a); t1:=[op(t1), b]; a:=b; od; t1; end; g(2, 5); # N. J. A. Sloane, Jul 14 2015
MATHEMATICA
NestList[FromDigits[IntegerDigits[#, 2]]&, 2, 5] (* Harvey P. Dale, Jul 16 2011 *)
PROG
(Python)
A008559_list = [2]
for _ in range(5):
....A008559_list.append(int(bin(A008559_list[-1])[2:]))
# Chai Wah Wu, Dec 26 2014
CROSSREFS
Cf. A006937 (essentially the same sequence).
For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.
Sequence in context: A255587 A137890 A074333 * A245728 A171485 A291882
KEYWORD
nonn,base,nice
EXTENSIONS
Comment corrected by Chai Wah Wu, Dec 26 2014
STATUS
approved