login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008489
Expansion of (1-x^7)/(1-x)^7.
3
1, 7, 28, 84, 210, 462, 924, 1715, 2996, 4977, 7924, 12166, 18102, 26208, 37044, 51261, 69608, 92939, 122220, 158536, 203098, 257250, 322476, 400407, 492828, 601685, 729092, 877338, 1048894, 1246420, 1472772, 1731009, 2024400, 2356431, 2730812, 3151484
OFFSET
0,2
COMMENTS
Coordination sequence for 6-dimensional cyclotomic lattice Z[zeta_7].
Growth series of the affine Weyl group of type A6. - Paul E. Gunnells, Jan 06 2017
REFERENCES
R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.
LINKS
M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
FORMULA
Equals binomial transform of [1, 6, 15, 20, 15, 6, 1, -1, 1, -1, 1, ...] - Gary W. Adamson, Apr 29 2008
a(n) = 7*n*(84 + 35*n^2 + n^4)/120, n>0. - R. J. Mathar, Mar 17 2011
G.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1-x)^6. - Colin Barker, Mar 04 2015
E.g.f.: 1 + x*(840 + 840*x + 420*x^2 + 70*x^3 + 7*x^4)*exp(x)/120. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq(7*n*(84 +35*n^2 +n^4)/120, n=1..40); # G. C. Greubel, Nov 07 2019
MATHEMATICA
CoefficientList[(1-x^7)/(1-x)^7 + O[x]^40, x] (* Jean-François Alcover, Jan 09 2019 *)
PROG
(PARI) Vec((x^6+x^5+x^4+x^3+x^2+x+1)/(x-1)^6 + O(x^40)) \\ Colin Barker, Mar 04 2015
(Magma) [1] cat [7*n*(84 +35*n^2 +n^4)/120: n in [1..40]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[7*n*(84 +35*n^2 +n^4)/120 for n in (1..40)] # G. C. Greubel, Nov 07 2019
(GAP) Concatenation([1], List([1..40], n-> 7*n*(84 +35*n^2 +n^4)/120)); # G. C. Greubel, Nov 07 2019
CROSSREFS
Sequence in context: A008499 A375163 A049018 * A023032 A341204 A278969
KEYWORD
nonn,easy
STATUS
approved