login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008487
Expansion of (1-x^5) / (1-x)^5.
3
1, 5, 15, 35, 70, 125, 205, 315, 460, 645, 875, 1155, 1490, 1885, 2345, 2875, 3480, 4165, 4935, 5795, 6750, 7805, 8965, 10235, 11620, 13125, 14755, 16515, 18410, 20445, 22625, 24955, 27440, 30085, 32895, 35875, 39030, 42365, 45885, 49595, 53500, 57605, 61915
OFFSET
0,2
COMMENTS
Related to the 4-dimensional cyclotomic lattice Z[zeta_5] (or A_4^{*}).
Growth series of the affine Weyl group of type A4. - Paul E. Gunnells, Jan 06 2017
REFERENCES
R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.
LINKS
M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
FORMULA
a(n) is the sum of 5 consecutive tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)(n+2)(n+3)/6 = A000292(n) for n>0, a(0) = 1. a(n) = A000292(n-4) + A000292(n-3) + A000292(n-2) + A000292(n-1) + A000292(n) for n>0, a(0) = 1. - Alexander Adamchuk, May 20 2006
Equals binomial transform of [1, 4, 6, 4, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 29 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. - Colin Barker, Jan 06 2017
For n >= 1, a(n) = (5*n^3 + 25*n)/6. - Christopher Hohl, Dec 30 2018
E.g.f.: 1 + x*(30 + 15*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq(5*n*(n^2 +5)/6, n=1..50); # G. C. Greubel, Nov 07 2019
MATHEMATICA
CoefficientList[Series[(1-x^5)/(1-x)^5, {x, 0, 50}], x] (* Stefano Spezia, Dec 30 2018 *)
PROG
(PARI) Vec((1-x^5) / (1-x)^5+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012; corrected by Colin Barker, Jan 06 2017
(Magma) [1] cat [5*n*(n^2 +5)/6: n in [1..50]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[5*n*(n^2 +5)/6 for n in (1..50)] # G. C. Greubel, Nov 07 2019
(GAP) concatenation([1], List([1..50], n-> 5*n*(n^2 +5)/6)); # G. C. Greubel, Nov 07 2019
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved