Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 09 2022 15:59:07
%S 1,720,179280,16954560,396974160,4632858720,34413301440,187477879680,
%T 814940600400,2975469665040,9486467837280,27053330840640,
%U 70485969919680,169930679355360,384163875688320,820167497170560,1668890801059920,3249626139960480,6096884624994960
%N Theta series of direct sum of 3 copies of E_8 lattice (the Niemeier lattice of type E_8^3).
%C Also the theta series for the Niemeier lattice of type E_8 D_16. - _Ben Mares_, Jul 17 2022
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123, 407.
%H Seiichi Manyama, <a href="/A008411/b008411.txt">Table of n, a(n) for n = 0..10000</a>
%F This series is the q-expansion of E_4(z)^3. Cf. A004009. - _Daniel D. Briggs_, Nov 25 2011
%F 691*a(n) - A029828(n) = 432000*A000594(n). - _Seiichi Manyama_, Jan 28 2017
%e G.f. = 1 + 720*q + 179280*q^2 + 16954560*q^3 + 396974160*q^4 + ...
%t a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, (t2^2 + 14 t2 t3 + t3^2)^3 ], {q, 0, n}]; (* _Michael Somos_, Jan 28 2017 *)
%t terms = 19; QP = QPochhammer; s = (QP[x]^24 + 256*x*QP[x^2]^24)^3 / (QP[x]*QP[x^2])^24 + O[x]^terms; CoefficientList[s, x] (* _Jean-François Alcover_, Jul 07 2017, adapted from PARI *)
%t terms = 19; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E4[x]^3 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 28 2018 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24)^3 / (eta(x + A) * eta(x^2 + A))^24, n))}; /* _Michael Somos_, Jan 28 2017 */
%o (Magma) A := Basis( ModularForms( Gamma1(1), 12), 19); A[1] + 720*A[2]; /* _Michael Somos_, Jan 28 2017 */
%Y Cf. A000594, A004009, A029828, A280869.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_