login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008411
Theta series of direct sum of 3 copies of E_8 lattice (the Niemeier lattice of type E_8^3).
21
1, 720, 179280, 16954560, 396974160, 4632858720, 34413301440, 187477879680, 814940600400, 2975469665040, 9486467837280, 27053330840640, 70485969919680, 169930679355360, 384163875688320, 820167497170560, 1668890801059920, 3249626139960480, 6096884624994960
OFFSET
0,2
COMMENTS
Also the theta series for the Niemeier lattice of type E_8 D_16. - Ben Mares, Jul 17 2022
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123, 407.
LINKS
FORMULA
This series is the q-expansion of E_4(z)^3. Cf. A004009. - Daniel D. Briggs, Nov 25 2011
691*a(n) - A029828(n) = 432000*A000594(n). - Seiichi Manyama, Jan 28 2017
EXAMPLE
G.f. = 1 + 720*q + 179280*q^2 + 16954560*q^3 + 396974160*q^4 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, (t2^2 + 14 t2 t3 + t3^2)^3 ], {q, 0, n}]; (* Michael Somos, Jan 28 2017 *)
terms = 19; QP = QPochhammer; s = (QP[x]^24 + 256*x*QP[x^2]^24)^3 / (QP[x]*QP[x^2])^24 + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 07 2017, adapted from PARI *)
terms = 19; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E4[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24)^3 / (eta(x + A) * eta(x^2 + A))^24, n))}; /* Michael Somos, Jan 28 2017 */
(Magma) A := Basis( ModularForms( Gamma1(1), 12), 19); A[1] + 720*A[2]; /* Michael Somos, Jan 28 2017 */
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved