login
A007775
Numbers not divisible by 2, 3 or 5.
73
1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209
OFFSET
1,2
COMMENTS
Also numbers n such that the sum of the 4th powers of the first n positive integers is divisible by n, or A000538(n) = n*(n+1)(2*n+1)(3*n^2+3*n-1)/30 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Also the 7-rough numbers: positive integers that have no prime factors less than 7. - Michael B. Porter, Oct 09 2009
a(n) mod 3 has period 8, repeating [1,1,2,1,2,1,2,2] = (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. floor(a(n)/3) is the set of numbers k such that k is congruent to {0,2,3,4,5,6,7,9} mod 10 = floor((5*n-2)/4)-floor((n mod 8)/6). - Gary Detlefs, Jan 08 2012
Numbers k such that C(k+3,3)==1 (mod k) and C(k+5,5)==1 (mod k). - Gary Detlefs, Sep 15 2013
a(n) mod 30 has period 8 repeating [1, 7, 11, 13, 17, 19, 23, 29]. The mean of these 8 numbers is 120/8 = 15. (a(n)-15) mod 30 has period 8 repeating [-14, -8, -4, -2, 2, 4, 8, 14]. One half of the absolute value produces the symmetric sequence [7, 4, 2, 1, 1, 2, 4, 7] = A061501(((n-1) + 16) mod 8). - Gary Detlefs, Sep 24 2013
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)*(n + 3*m)(n + 4*m)/120 is integral. Cf. A007310. - Peter Bala, Nov 13 2015
The asymptotic density of this sequence is 4/15. - Amiram Eldar, Sep 30 2020
If a(n) + a(n+1) = 0 (mod 30), then a(n-j) + a(n+j+1) = a(n) + a(n+1) for each j in [1, n-1]. - Alexandre Herrera, Jun 27 2023
LINKS
Peter Bala, A note on A007775.
Abel Jansma, E_8 Symmetry Structures in the Ising model, Master's thesis, University of Amsterdam, 2018.
Eric Weisstein's World of Mathematics, Rough Number.
FORMULA
A141256(a(n)) = n+1. - Reinhard Zumkeller, Jun 17 2008
From R. J. Mathar, Feb 27 2009: (Start)
a(n+8) = a(n) + 30.
a(n) = a(n-1) + a(n-8) - a(n-9).
G.f.: x*(1 + 6*x + 4*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + x^8)/((1 + x)*(x^2 + 1)*(x^4 + 1)*(x-1)^2). (End)
a(n) = 4*n - 3 - 2*floor((n-1)/8) + (1 + (-1)^floor((n-2)/2))*(-1)^floor((n-2)/4), n >= 1. - Timothy Hopper, Mar 14 2010
a(1 - n) = -a(n). - Michael Somos, Feb 05 2011
Numbers k such that ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)). - Gary Detlefs, Dec 30 2011
Numbers k such that k^2 mod 30 is 1 or 19. - Gary Detlefs, Dec 31 2011
a(n) = 3*(floor((5*n-2)/4) - floor((n mod 8)/6)) + (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jan 08 2012
a(n) = 4*n - 3 + 2*(floor((n+6)/8) - floor((n+4)/8) - floor((n+2)/8) + floor(n/8) - floor((n-1)/8)), n >= 1. From the o.g.f. given above by R. J. Mathar (with the denominator written as (1-x^8)*(1-x)), and a two-step reduction of the floor functions. Compare with Hopper's and Detlefs's formulas above. - Wolfdieter Lang, Jan 26 2012
a(n) = (6*f(n) - 3 + (-1)^f(n))/2, where f(n)= n + floor(n/4)+ floor(((n+4) mod 8)/6). - Gary Detlefs, Sep 15 2013
a(n) = 30*floor((n-1)/8) + 15 + 2*f((n-1) mod 8 + 16)*(-1)^floor(((n+3) mod 8)/4), where f(n) = (n*(n+1)/2+1) mod 10. - Gary Detlefs, Sep 24 2013
a(n) = 3*n + 6*floor(n/8) + (n mod 2) - 2*floor(((n-2) mod 8)/6) - 2*floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jun 01 2014
a(n+1) = ((n << 2 - n >> 2) || 1) + ((n << 1 - n >> 1) && 2), where << and >> are bitwise left and right shifts, || and && are bitwise "or" and "and". - Andrew Lelechenko, Jul 08 2017
a(n) = 2*n + 2*floor(1/2 + (7*n)/8) + 2*(91 mod (2 - ((3*n)/4 + n^2/4) mod 2)) - 3 (n > 0). - Mikk Heidemaa, Dec 06 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021
MAPLE
for i from 1 to 500 do if gcd(i, 30) = 1 then print(i); fi; od;
for k from 1 to 300 do if ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)) then print(k) fi od. # Gary Detlefs, Dec 30 2011
MATHEMATICA
Select[ Range[ 300 ], GCD[ #1, 30 ]==1& ]
Select[Range[250], Mod[#, 2]>0&&Mod[#, 3]>0&&Mod[#, 5]>0&] (* Vincenzo Librandi, Feb 08 2014 *)
a[ n_] := Quotient[ n, 8, 1] 30 + {1, 7, 11, 13, 17, 19, 23, 29}[[Mod[n, 8, 1]]]; (* Michael Somos, Jun 02 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 7, 11, 13, 17, 19, 23, 29, 31}, 100] (* Mikk Heidemaa, Dec 07 2017 *)
Cases[Range@1000, x_ /; NoneTrue[Array[Prime, 3], Divisible[x, #] &]] (* Mikk Heidemaa, Dec 07 2017 *)
CoefficientList[ Series[(x^8 + 6x^7 + 4x^6 + 2x^5 + 4x^4 + 2x^3 + 4x^2 + 6x + 1)/((x - 1)^2 (x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 55}], x] (* Robert G. Wilson v, Dec 07 2017 *)
PROG
(PARI) isA007775(n) = gcd(n, 30)==1 \\ Michael B. Porter, Oct 09 2009
(PARI) {a(n) = n\8 * 30 + [ -1, 1, 7, 11, 13, 17, 19, 23][n%8 + 1]} /* Michael Somos, Feb 05 2011 */
(PARI) {a(n) = n\8 * 6 + 9 + 3 * (n+1)\2 * 2 - max(5, (n-2)%8) * 2} /* Michael Somos, Jun 02 2014 */
(PARI) Vec(x*(1+6*x+4*x^2+2*x^3+4*x^4+2*x^5+4*x^6+6*x^7+x^8)/((1+x)*(x^2+1)*(x^4+1)*( x-1)^2) + O(x^100)) \\ Altug Alkan, Nov 16 2015
(Haskell)
a007775 n = a007775_list !! (n-1)
a007775_list = 1 : filter ((> 5) . a020639) [1..]
-- Reinhard Zumkeller, Jan 06 2013
(Sage)
a = lambda n: ((((n-1)<< 2)-((n-1)>>2))|1) + ((((n-1)<<1)-((n-1)>> 1)) & 2)
print([a(n) for n in (1..56)]) # after Andrew Lelechenko, Peter Luschny, Jul 08 2017
(Magma) I:=[1, 7, 11, 13, 17, 19, 23, 29, 31]; [n le 9 select I[n] else Self(n-1) +Self(n-8) - Self(n-9): n in [1..80]]; // G. C. Greubel, Oct 22 2018
CROSSREFS
Cf. A000538, A054403, A145011 (first differences).
For k-rough numbers with other values of k, see A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063.
Complement is A080671.
For digital root of Fibonacci numbers indexed by this sequence, see A227896.
Sequence in context: A005776 A322272 A161850 * A070884 A135777 A090459
KEYWORD
nonn,easy
STATUS
approved