OFFSET
1,2
COMMENTS
Also numbers n such that the sum of the 4th powers of the first n positive integers is divisible by n, or A000538(n) = n*(n+1)(2*n+1)(3*n^2+3*n-1)/30 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Also the 7-rough numbers: positive integers that have no prime factors less than 7. - Michael B. Porter, Oct 09 2009
a(n) mod 3 has period 8, repeating [1,1,2,1,2,1,2,2] = (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. floor(a(n)/3) is the set of numbers k such that k is congruent to {0,2,3,4,5,6,7,9} mod 10 = floor((5*n-2)/4)-floor((n mod 8)/6). - Gary Detlefs, Jan 08 2012
Numbers k such that C(k+3,3)==1 (mod k) and C(k+5,5)==1 (mod k). - Gary Detlefs, Sep 15 2013
a(n) mod 30 has period 8 repeating [1, 7, 11, 13, 17, 19, 23, 29]. The mean of these 8 numbers is 120/8 = 15. (a(n)-15) mod 30 has period 8 repeating [-14, -8, -4, -2, 2, 4, 8, 14]. One half of the absolute value produces the symmetric sequence [7, 4, 2, 1, 1, 2, 4, 7] = A061501(((n-1) + 16) mod 8). - Gary Detlefs, Sep 24 2013
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)*(n + 3*m)(n + 4*m)/120 is integral. Cf. A007310. - Peter Bala, Nov 13 2015
The asymptotic density of this sequence is 4/15. - Amiram Eldar, Sep 30 2020
If a(n) + a(n+1) = 0 (mod 30), then a(n-j) + a(n+j+1) = a(n) + a(n+1) for each j in [1, n-1]. - Alexandre Herrera, Jun 27 2023
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..8000
Peter Bala, A note on A007775.
Abel Jansma, E_8 Symmetry Structures in the Ising model, Master's thesis, University of Amsterdam, 2018.
Eric Weisstein's World of Mathematics, Rough Number.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
FORMULA
A141256(a(n)) = n+1. - Reinhard Zumkeller, Jun 17 2008
From R. J. Mathar, Feb 27 2009: (Start)
a(n+8) = a(n) + 30.
a(n) = a(n-1) + a(n-8) - a(n-9).
G.f.: x*(1 + 6*x + 4*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + x^8)/((1 + x)*(x^2 + 1)*(x^4 + 1)*(x-1)^2). (End)
a(n) = 4*n - 3 - 2*floor((n-1)/8) + (1 + (-1)^floor((n-2)/2))*(-1)^floor((n-2)/4), n >= 1. - Timothy Hopper, Mar 14 2010
a(1 - n) = -a(n). - Michael Somos, Feb 05 2011
Numbers k such that ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)). - Gary Detlefs, Dec 30 2011
Numbers k such that k^2 mod 30 is 1 or 19. - Gary Detlefs, Dec 31 2011
a(n) = 3*(floor((5*n-2)/4) - floor((n mod 8)/6)) + (n mod 2) + floor(((n-1) mod 8)/7) - floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jan 08 2012
a(n) = 4*n - 3 + 2*(floor((n+6)/8) - floor((n+4)/8) - floor((n+2)/8) + floor(n/8) - floor((n-1)/8)), n >= 1. From the o.g.f. given above by R. J. Mathar (with the denominator written as (1-x^8)*(1-x)), and a two-step reduction of the floor functions. Compare with Hopper's and Detlefs's formulas above. - Wolfdieter Lang, Jan 26 2012
a(n) = (6*f(n) - 3 + (-1)^f(n))/2, where f(n)= n + floor(n/4)+ floor(((n+4) mod 8)/6). - Gary Detlefs, Sep 15 2013
a(n) = 30*floor((n-1)/8) + 15 + 2*f((n-1) mod 8 + 16)*(-1)^floor(((n+3) mod 8)/4), where f(n) = (n*(n+1)/2+1) mod 10. - Gary Detlefs, Sep 24 2013
a(n) = 3*n + 6*floor(n/8) + (n mod 2) - 2*floor(((n-2) mod 8)/6) - 2*floor(((n-2) mod 8)/7) + 1. - Gary Detlefs, Jun 01 2014
a(n+1) = ((n << 2 - n >> 2) || 1) + ((n << 1 - n >> 1) && 2), where << and >> are bitwise left and right shifts, || and && are bitwise "or" and "and". - Andrew Lelechenko, Jul 08 2017
a(n) = 2*n + 2*floor(1/2 + (7*n)/8) + 2*(91 mod (2 - ((3*n)/4 + n^2/4) mod 2)) - 3 (n > 0). - Mikk Heidemaa, Dec 06 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021
MAPLE
for i from 1 to 500 do if gcd(i, 30) = 1 then print(i); fi; od;
for k from 1 to 300 do if ((k^2 mod 48=1) or (k^2 mod 48=25)) and ((k^2 mod 120=1) or (k^2 mod 120=49)) then print(k) fi od. # Gary Detlefs, Dec 30 2011
MATHEMATICA
Select[ Range[ 300 ], GCD[ #1, 30 ]==1& ]
Select[Range[250], Mod[#, 2]>0&&Mod[#, 3]>0&&Mod[#, 5]>0&] (* Vincenzo Librandi, Feb 08 2014 *)
a[ n_] := Quotient[ n, 8, 1] 30 + {1, 7, 11, 13, 17, 19, 23, 29}[[Mod[n, 8, 1]]]; (* Michael Somos, Jun 02 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 7, 11, 13, 17, 19, 23, 29, 31}, 100] (* Mikk Heidemaa, Dec 07 2017 *)
Cases[Range@1000, x_ /; NoneTrue[Array[Prime, 3], Divisible[x, #] &]] (* Mikk Heidemaa, Dec 07 2017 *)
CoefficientList[ Series[(x^8 + 6x^7 + 4x^6 + 2x^5 + 4x^4 + 2x^3 + 4x^2 + 6x + 1)/((x - 1)^2 (x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 55}], x] (* Robert G. Wilson v, Dec 07 2017 *)
PROG
(PARI) isA007775(n) = gcd(n, 30)==1 \\ Michael B. Porter, Oct 09 2009
(PARI) {a(n) = n\8 * 30 + [ -1, 1, 7, 11, 13, 17, 19, 23][n%8 + 1]} /* Michael Somos, Feb 05 2011 */
(PARI) {a(n) = n\8 * 6 + 9 + 3 * (n+1)\2 * 2 - max(5, (n-2)%8) * 2} /* Michael Somos, Jun 02 2014 */
(PARI) Vec(x*(1+6*x+4*x^2+2*x^3+4*x^4+2*x^5+4*x^6+6*x^7+x^8)/((1+x)*(x^2+1)*(x^4+1)*( x-1)^2) + O(x^100)) \\ Altug Alkan, Nov 16 2015
(Haskell)
a007775 n = a007775_list !! (n-1)
a007775_list = 1 : filter ((> 5) . a020639) [1..]
-- Reinhard Zumkeller, Jan 06 2013
(Sage)
a = lambda n: ((((n-1)<< 2)-((n-1)>>2))|1) + ((((n-1)<<1)-((n-1)>> 1)) & 2)
print([a(n) for n in (1..56)]) # after Andrew Lelechenko, Peter Luschny, Jul 08 2017
(Magma) I:=[1, 7, 11, 13, 17, 19, 23, 29, 31]; [n le 9 select I[n] else Self(n-1) +Self(n-8) - Self(n-9): n in [1..80]]; // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved