OFFSET
1,2
COMMENTS
The length of the path varies.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-338.
Guttmann A J and Jensen I 2022 Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices Journal of Physics A: Mathematical and Theoretical 55 012345, (33pp) ; arXiv:2208.06744, Aug 2022.
D. E. Knuth, 'Things A Computer Scientist Rarely Talks About,' CSLI Publications, Stanford, CA, 2001, pages 27-28.
D. E. Knuth, The Art of Computer Programming, Section 7.1.4.
Shin-ichi Minato, The power of enumeration - BDD/ZDD-based algorithms for tackling combinatorial explosion, Chapter 3 of Applications of Zero-Suppressed Decision Diagrams, ed. T. Satsoa and J. T. Butler, Morgan & Claypool Publishers, 2014
Shin-ichi Minato, Counting by ZDD, Encyclopedia of Algorithms, 2014, pp. 1-6.
Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file. (Science Section).
LINKS
I. Jensen, H. Iwashita, and R. Spaans, Table of n, a(n) for n = 1..27 (I. Jensen computed terms 1 to 20, H. Iwashita computed 21 and 22, R. Spaans computed 23 to 25, and H. Iwashita computed 26 and 27)
M. Bousquet-Mélou, A. J. Guttmann and I. Jensen, Self-avoiding walks crossing a square, arXiv:cond-mat/0506341 [cond-mat.stat-mech], 2005.
Doi, Maeda, Nagatomo, Niiyama, Sanson, Suzuki, et al., Time with class! Let's count! [Youtube-animation demonstrating this sequence. In Japanese with English translation]
Steven R. Finch, Self-Avoiding-Walk Connective Constants
Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or A348456, arXiv:2211.14482 [math.CO], 2022.
H. Iwashita, J. Kawahara, and S. Minato, ZDD-Based Computation of the Number of Paths in a Graph, TCS Technical Report, TCS-TR-A-12-60, Hokkaido University, September 18, 2012.
H. Iwashita, Y. Nakazawa, J. Kawahara, T. Uno, and S. Minato, Efficient Computation of the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions, TCS Technical Report, TCS-TR-A-13-64, Hokkaido University, April 26, 2013.
I. Jensen, Series Expansions for Self-Avoiding Walks
Shin-ichi Minato, Power of Enumeration - Recent Topics on BDD/ZDD-Based Techniques for Discrete Structure Manipulation, IEICE Transactions on Information and Systems, Volume E100.D (2017), Issue 8, p. 1556-1562.
OEIS Wiki, Self-avoiding_walks
Kohei Shinohara, Atsuto Seko, Takashi Horiyama, Masakazu Ishihata, Junya Honda, and Isao Tanaka, Derivative structure enumeration using binary decision diagram, arXiv:2002.12603 [physics.comp-ph], 2020.
Ruben Grønning Spaans, C program
Jens Weise, Evolutionary Many-Objective Optimisation for Pathfinding Problems, Ph. D. Dissertation, Otto von Guercke Univ., Magdeburg (Germany, 2022), see p. 53.
Eric Weisstein's World of Mathematics, Self-Avoiding Walk
EXAMPLE
Suppose we start at (1,1) and end at (n,n). Let U, D, L, R denote steps that are up, down, left, right.
a(2) = 2: UR or RU.
a(3) = 12: UURR, UURDRU, UURDDRUU, URUR, URRU, URDRUU and their reflections in the x=y line.
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A007764(n):
if n == 1: return 1
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
start, goal = 1, n * n
paths = GraphSet.paths(start, goal)
return paths.len()
print([A007764(n) for n in range(1, 10)]) # Seiichi Manyama, Mar 21 2020
CROSSREFS
KEYWORD
nonn,walk,hard,nice
AUTHOR
EXTENSIONS
Computed to n=12 by John Van Rosendale in 1981
Extended to n=13 by Don Knuth, Dec 07 1995
Extended to n=20 by Mireille Bousquet-Mélou, A. J. Guttmann and I. Jensen
Extended to n=22 using ZDD technique based on Knuth's The Art of Computer Programming (exercise 225 in 7.1.4) by H. Iwashita, J. Kawahara, and S. Minato, Sep 18 2012
Extended to n=25 using state space compression (with rank/unrank) and dynamic programming (based in I. Jensen) by Ruben Grønning Spaans, Feb 22 2013
Extended to n=26 by Hiroaki Iwashita, Apr 11 2013
Extended to n=27 by Hiroaki Iwashita, Nov 18 2013
STATUS
approved