login
A007719
Number of independent polynomial invariants of symmetric matrix of order n.
12
1, 2, 4, 11, 30, 95, 328, 1211, 4779, 19902, 86682, 393072, 1847264, 8965027, 44814034, 230232789, 1213534723, 6552995689, 36207886517, 204499421849, 1179555353219, 6942908667578, 41673453738272, 254918441681030, 1588256152307002, 10073760672179505
OFFSET
0,2
COMMENTS
Also, number of connected multigraphs with n edges (allowing loops) and any number of nodes.
Also the number of non-isomorphic connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 63.
FORMULA
Inverse Euler transform of A007717.
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 11 connected multiset partitions of {1, 1, 2, 2, 3, 3}:
(112233),
(1)(12233), (12)(1233), (112)(233), (123)(123),
(1)(2)(1233), (1)(12)(233), (1)(23)(123), (12)(13)(23),
(1)(2)(3)(123), (1)(2)(13)(23).
(End)
MATHEMATICA
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++,
c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {};
For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[ Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
A007717 = Table[Print[n]; RowSumMats[n, 2 n, 2], {n, 0, 20}];
Join[{1}, EULERi[Rest[A007717]]] (* Jean-François Alcover, Oct 29 2018, using Andrew Howroyd's code for A007717 *)
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(0)=1 added by Alberto Tacchella, Jun 20 2011
a(7)-a(25) from Franklin T. Adams-Watters, Jun 21 2011
STATUS
approved