login
A007704
a(n+2) = (a(n) - 1)*a(n+1) + 1.
(Formerly M0594)
1
2, 3, 4, 9, 28, 225, 6076, 1361025, 8268226876, 11253255215681025, 93044467205527772332546876, 1047053135870867396062743192203958743681025
OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Davison and Jeffrey O. Shallit, Continued Fractions for Some Alternating Series, Monatshefte für Mathematik, Vol. 111 (1991), pp. 119-126; alternative link.
FORMULA
a(n) = A006277(n) + 1. - R. J. Mathar, Apr 27 2007
Product_{k=1..n} a(k) = A006277(k)*A006277(k+1). - Amiram Eldar, Mar 19 2024
MAPLE
A007704 := proc(n) options remember; if n <= 2 then RETURN(n+1) else (A007704(n-2)-1)*A007704(n-1)+1; fi; end;
MATHEMATICA
RecurrenceTable[{a[n] == a[n-1] (a[n-2] - 1) + 1, a[1] == 2, a[2] == 3}, a, {n, 1, 12}] (* Jean-François Alcover, Apr 05 2020 *)
CROSSREFS
Cf. A006277.
Sequence in context: A001144 A121253 A014118 * A328836 A059972 A245930
KEYWORD
nonn,easy
STATUS
approved