login
A007426
d_4(n), or tau_4(n), the number of ordered factorizations of n as n = rstu.
(Formerly M3231)
44
1, 4, 4, 10, 4, 16, 4, 20, 10, 16, 4, 40, 4, 16, 16, 35, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 56, 16, 16, 16, 100, 4, 16, 16, 80, 4, 64, 4, 40, 40, 16, 4, 140, 10, 40, 16, 40, 4, 80, 16, 80, 16, 16, 4, 160, 4, 16, 40, 84, 16, 64, 4, 40, 16, 64, 4, 200, 4, 16, 40, 40, 16
OFFSET
1,2
COMMENTS
Inverse Möbius transform applied thrice to all 1's sequence; or, Dirichlet convolution of d(n) (A000005).
Let n = Product p_i^e_i. tau (A000005) is tau_2, A007425 is tau_3, this sequence is tau_4, where tau_k(n) (also written as d_k(n)) = Product_i binomial(k-1+e_i, k-1) is the k-th Piltz function. It gives the number of ordered factorizations of n as a product of k terms.
Appears to equal the number of solid partitions of n that can be extended in exactly 4 ways to a solid partition of n + 1 by adding one element. - Wouter Meeussen, Sep 11 2004
Equals row sums of A127172. - Gary W. Adamson, Nov 05 2007
REFERENCES
A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. xv.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
O. Bordellès, Explicit upper bounds for the average order of dn (m) and application to class number, J. Inequal. Pure and Appl. Math, 3(3), 2002.
Karin Cvetko-Vah, Michael Kinyon, Jonathan Leech, Tomaž Pisanski, Regular Antilattices, arXiv:1911.02858 [math.RA], 2019.
J. Furuya, Y. Tanigawa, W. Zhai, Dirichlet series obtained from the error term in the Dirichlet divisor problem, Monatshefte für Mathematik, 2010, 160(4), 385-402.
J. Sándor, On the arithmetical functions d~ k (n) and d^*~ k (n), Portugaliae Mathematica, 53, 107-116.
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{d dividing n} tau(d)*tau(n/d). - Benoit Cloitre, May 12 2003
Dirichlet g.f.: zeta^4(x).
G.f.: Sum_{k>=1} tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
MAPLE
A007426 := proc(n) local e, j; e := ifactors(n)[2]: product(binomial(3+e[j][2], 3), j=1..nops(e)); end;
MATHEMATICA
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 4], {n, 77}] (* Robert G. Wilson v, Nov 02 2005 *)
a[n_] := DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #]&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 4], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, k, sumdiv(k, x, numdiv(x))), ", "))
(PARI) a(n)=sumdiv(n, d, numdiv(n/d)*numdiv(d))
(PARI) a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+3, 3)) \\ Charles R Greathouse IV, Oct 28 2017
CROSSREFS
Cf. A007425.
Column k=4 of A077592.
Sequence in context: A160723 A255486 A286779 * A353267 A339336 A319056
KEYWORD
nonn,easy,mult
EXTENSIONS
More terms from Robert G. Wilson v, Nov 02 2005
STATUS
approved