Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4231 #20 Oct 07 2017 00:09:58
%S 1,6,39,320,3281,40558,586751,9719616,181353777,3762893750,
%T 85934344775,2141853777856,57852105131809,1683237633305502,
%U 52483648929669119,1745835287515739328,61712106494672572641,2309989101145068446502,91279147976756195994983
%N Number of functors of degree n from free Abelian groups to Abelian groups.
%D H. J. Baues, Quadratic functors and metastable homotopy, Jnl. Pure and Applied Algebra, 91 (1994), 49-107.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A007322/b007322.txt">Table of n, a(n) for n = 1..400</a>
%H Vaclav Kotesovec, <a href="http://oeis.org/A120733/a120733.pdf">Asymptotics of the sequence A120733</a>
%F Binomial transform of A101370. - _Vladeta Jovovic_, Aug 17 2006
%F a(n) = (1/n!)*Sum_{k=1..n} (-1)^(n-k)*Stirling1(n+1,k+1)*A000670(k)^2. - _Vladeta Jovovic_, Aug 17 2006
%F G.f.: (1/(1-x))*Sum_{m>0,n>0} Sum_{j=1..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^m. - _Vladeta Jovovic_, Aug 17 2006
%F Partial sums of A120733. - _Vladeta Jovovic_, Aug 21 2006
%F a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - _Vaclav Kotesovec_, May 03 2015
%t A120733[n_] := A120733[n] = Sum[2^(-2-r-s)*Binomial[n+r*s-1, n] , {r, 0, Infinity}, {s, 0, Infinity}]; a[n_] := Sum[A120733[k], {k, 1, n}]; Table[Print[an = a[n]]; an, {n, 1, 18}] (* _Jean-François Alcover_, May 15 2012, after _Vladeta Jovovic_ *)
%K nonn,nice
%O 1,2
%A Don Zagier (don.zagier(AT)mpim-bonn.mpg.de), Apr 11 1994
%E More terms from _Vladeta Jovovic_, Aug 17 2006