login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007322
Number of functors of degree n from free Abelian groups to Abelian groups.
(Formerly M4231)
4
1, 6, 39, 320, 3281, 40558, 586751, 9719616, 181353777, 3762893750, 85934344775, 2141853777856, 57852105131809, 1683237633305502, 52483648929669119, 1745835287515739328, 61712106494672572641, 2309989101145068446502, 91279147976756195994983
OFFSET
1,2
REFERENCES
H. J. Baues, Quadratic functors and metastable homotopy, Jnl. Pure and Applied Algebra, 91 (1994), 49-107.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
Binomial transform of A101370. - Vladeta Jovovic, Aug 17 2006
a(n) = (1/n!)*Sum_{k=1..n} (-1)^(n-k)*Stirling1(n+1,k+1)*A000670(k)^2. - Vladeta Jovovic, Aug 17 2006
G.f.: (1/(1-x))*Sum_{m>0,n>0} Sum_{j=1..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^m. - Vladeta Jovovic, Aug 17 2006
Partial sums of A120733. - Vladeta Jovovic, Aug 21 2006
a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - Vaclav Kotesovec, May 03 2015
MATHEMATICA
A120733[n_] := A120733[n] = Sum[2^(-2-r-s)*Binomial[n+r*s-1, n] , {r, 0, Infinity}, {s, 0, Infinity}]; a[n_] := Sum[A120733[k], {k, 1, n}]; Table[Print[an = a[n]]; an, {n, 1, 18}] (* Jean-François Alcover, May 15 2012, after Vladeta Jovovic *)
CROSSREFS
Sequence in context: A067273 A187117 A137972 * A341728 A058191 A113347
KEYWORD
nonn,nice
AUTHOR
Don Zagier (don.zagier(AT)mpim-bonn.mpg.de), Apr 11 1994
EXTENSIONS
More terms from Vladeta Jovovic, Aug 17 2006
STATUS
approved