login
A007089
Numbers in base 3.
(Formerly M1960)
350
0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211
OFFSET
0,3
COMMENTS
Nonnegative integers with no decimal digit > 2. Thus nonnegative integers in base 10 whose quadrupling by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(0)=0, a(n) = 10*a(n/3) if n==0 (mod 3), a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = 10*a(floor(n/3)) + (n mod 3) if n > 0, a(0) = 0. - M. F. Hasler, Feb 15 2023
MAPLE
A007089 := proc(n) option remember;
if n <= 0 then 0
else
if (n mod 3) = 0 then 10*procname(n/3) else procname(n-1) + 1 fi
fi end:
[seq(A007089(n), n=0..729)]; # - N. J. A. Sloane, Mar 09 2019
MATHEMATICA
Table[ FromDigits[ IntegerDigits[n, 3]], {n, 0, 50}]
PROG
(PARI) a(n)=if(n<1, 0, if(n%3, a(n-1)+1, 10*a(n/3)))
(PARI) a(n)=fromdigits(digits(n, 3)) \\ Charles R Greathouse IV, Jan 08 2017
(Haskell)
a007089 0 = 0
a007089 n = 10 * a007089 n' + m where (n', m) = divMod n 3
-- Reinhard Zumkeller, Feb 19 2012
(Python)
def A007089(n):
n, s = divmod(n, 3); t = 1
while n: n, r = divmod(n, 3); t *= 10; s += r*t
return s # M. F. Hasler, Feb 15 2023
CROSSREFS
Primes when read as if in base 10: A036954.
Sequence in context: A217072 A106518 A158304 * A159952 A136820 A256437
KEYWORD
base,nonn,easy
EXTENSIONS
More terms from James A. Sellers, May 01 2000
STATUS
approved