OFFSET
0,2
COMMENTS
Also denominators of asymptotic expansion of polygamma function psi''(z).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
FORMULA
Apparently a(n) = denominator(Sum_{k=0..2*n-1} (-1)^(2*n-k+1)*E1(2*n, k+1)/ binomial(2*n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
EXAMPLE
(n+1)*B_n gives the sequence 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
MAPLE
gf := z / (1 - exp(-z)): ser := series(gf, z, 220):
seq(denom((n+1)!*coeff(ser, z, n)), n=0..108, 2); # Peter Luschny, Aug 29 2020
MATHEMATICA
Denominator[Table[(2n+1)BernoulliB[2n], {n, 0, 60}]] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(PARI) a(n) = denominator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
CROSSREFS
KEYWORD
nonn,frac,easy,nice
AUTHOR
STATUS
approved