login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006955
Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
(Formerly M1562)
11
1, 2, 6, 6, 10, 6, 210, 2, 30, 42, 110, 6, 546, 2, 30, 462, 170, 6, 51870, 2, 330, 42, 46, 6, 6630, 22, 30, 798, 290, 6, 930930, 2, 102, 966, 10, 66, 1919190, 2, 30, 42, 76670, 6, 680862, 2, 690, 38874, 470, 6, 46410, 2, 330, 42, 106, 6, 1919190
OFFSET
0,2
COMMENTS
Also denominators of asymptotic expansion of polygamma function psi''(z).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
FORMULA
Apparently a(n) = denominator(Sum_{k=0..2*n-1} (-1)^(2*n-k+1)*E1(2*n, k+1)/ binomial(2*n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
EXAMPLE
(n+1)*B_n gives the sequence 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
MAPLE
gf := z / (1 - exp(-z)): ser := series(gf, z, 220):
seq(denom((n+1)!*coeff(ser, z, n)), n=0..108, 2); # Peter Luschny, Aug 29 2020
MATHEMATICA
Denominator[Table[(2n+1)BernoulliB[2n], {n, 0, 60}]] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(PARI) a(n) = denominator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
CROSSREFS
Numerators are in A002427.
Sequence in context: A372610 A021978 A141377 * A306745 A196053 A063210
KEYWORD
nonn,frac,easy,nice
STATUS
approved